Cargando…
Quantum algorithms for geologic fracture networks
Solving large systems of equations is a challenge for modeling natural phenomena, such as simulating subsurface flow. To avoid systems that are intractable on current computers, it is often necessary to neglect information at small scales, an approach known as coarse-graining. For many practical app...
Autores principales: | Henderson, Jessie M., Podzorova, Marianna, Cerezo, M., Golden, John K., Gleyzer, Leonard, Viswanathan, Hari S., O’Malley, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938886/ https://www.ncbi.nlm.nih.gov/pubmed/36805641 http://dx.doi.org/10.1038/s41598-023-29643-4 |
Ejemplares similares
-
Quantum computing and preconditioners for hydrological linear systems
por: Golden, John, et al.
Publicado: (2022) -
Quantum annealing algorithms for Boolean tensor networks
por: Pelofske, Elijah, et al.
Publicado: (2022) -
An approach to quantum-computational hydrologic inverse analysis
por: O’Malley, Daniel
Publicado: (2018) -
Physics-informed machine learning with differentiable programming for heterogeneous underground reservoir pressure management
por: Pachalieva, Aleksandra, et al.
Publicado: (2022) -
Reverse annealing for nonnegative/binary matrix factorization
por: Golden, John, et al.
Publicado: (2021)