Cargando…
Artificial intelligence-based clustering and characterization of Parkinson's disease trajectories
Parkinson’s disease (PD) is a highly heterogeneous disease both with respect to arising symptoms and its progression over time. This hampers the design of disease modifying trials for PD as treatments which would potentially show efficacy in specific patient subgroups could be considered ineffective...
Autores principales: | Birkenbihl, Colin, Ahmad, Ashar, Massat, Nathalie J., Raschka, Tamara, Avbersek, Andreja, Downey, Patrick, Armstrong, Martin, Fröhlich, Holger |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938890/ https://www.ncbi.nlm.nih.gov/pubmed/36801900 http://dx.doi.org/10.1038/s41598-023-30038-8 |
Ejemplares similares
-
Differences in cohort study data affect external validation of artificial intelligence models for predictive diagnostics of dementia - lessons for translation into clinical practice
por: Birkenbihl, Colin, et al.
Publicado: (2020) -
Deep learning for clustering of multivariate clinical patient trajectories with missing values
por: de Jong, Johann, et al.
Publicado: (2019) -
Analyzing Patient Trajectories With Artificial Intelligence
por: Allam, Ahmed, et al.
Publicado: (2021) -
AI reveals insights into link between CD33 and cognitive impairment in Alzheimer’s Disease
por: Raschka, Tamara, et al.
Publicado: (2023) -
Generation of realistic synthetic data using Multimodal Neural Ordinary Differential Equations
por: Wendland, Philipp, et al.
Publicado: (2022)