Cargando…
Wavelets based physics informed neural networks to solve non-linear differential equations
In this study, the applicability of physics informed neural networks using wavelets as an activation function is discussed to solve non-linear differential equations. One of the prominent equations arising in fluid dynamics namely Blasius viscous flow problem is solved. A linear coupled differential...
Autores principales: | Uddin, Ziya, Ganga, Sai, Asthana, Rishi, Ibrahim, Wubshet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938906/ https://www.ncbi.nlm.nih.gov/pubmed/36807303 http://dx.doi.org/10.1038/s41598-023-29806-3 |
Ejemplares similares
-
Wavelet methods for solving partial differential equations and fractional differential equations
por: Ray, Santanu Saha, et al.
Publicado: (2018) -
Haar wavelets method for solving class of coupled systems of linear fractional Fredholm integro-differential equations
por: Darweesh, Amer, et al.
Publicado: (2023) -
Physics-informed neural networks for solving nonlinear diffusivity and Biot’s equations
por: Kadeethum, Teeratorn, et al.
Publicado: (2020) -
Physics-Informed Neural Networks for Solving Coupled Stokes–Darcy Equation
por: Pu, Ruilong, et al.
Publicado: (2022) -
Wavelets and their application for the solution of partial differential equations in physics
por: Gödecker, Stefan
Publicado: (1998)