Cargando…

Using machine learning for mortality prediction and risk stratification in atezolizumab‐treated cancer patients: Integrative analysis of eight clinical trials

BACKGROUND: Few models exist to predict mortality in cancer patients receiving immunotherapy. Our aim was to build a machine learning‐based risk stratification model for predicting mortality in atezolizumab‐treated cancer patients. METHODS: Data from 2538 patients in eight atezolizumab‐treated cance...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Yougen, Zhu, Wenyu, Wang, Jing, Liu, Lvwen, Zhang, Wei, Wang, Yang, Shi, Jindong, Xia, Ju, Gu, Yuting, Qian, Qingqing, Hong, Yang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9939114/
https://www.ncbi.nlm.nih.gov/pubmed/35871390
http://dx.doi.org/10.1002/cam4.5060
_version_ 1784890774353084416
author Wu, Yougen
Zhu, Wenyu
Wang, Jing
Liu, Lvwen
Zhang, Wei
Wang, Yang
Shi, Jindong
Xia, Ju
Gu, Yuting
Qian, Qingqing
Hong, Yang
author_facet Wu, Yougen
Zhu, Wenyu
Wang, Jing
Liu, Lvwen
Zhang, Wei
Wang, Yang
Shi, Jindong
Xia, Ju
Gu, Yuting
Qian, Qingqing
Hong, Yang
author_sort Wu, Yougen
collection PubMed
description BACKGROUND: Few models exist to predict mortality in cancer patients receiving immunotherapy. Our aim was to build a machine learning‐based risk stratification model for predicting mortality in atezolizumab‐treated cancer patients. METHODS: Data from 2538 patients in eight atezolizumab‐treated cancer clinical trials across three cancer types (non‐small‐cell lung cancer, bladder transitional cell carcinoma, and renal cell carcinoma) were included. The whole cohort was randomly split into development and validation cohorts in a 7:3 ratio. Machine‐learning algorithms (extreme gradient boosting, random forest, logistic regression with lasso regularization, support vector machine, and K‐nearest neighbor) were applied to develop prediction models. Model performance was mainly assessed by area under the receiver operating characteristic curve (AUC) value, calibration plot, and decision curve analysis. The probability of death risk was then stratified. RESULTS: One thousand and three hundred and seventy‐nine (54.33%) patients died. The random forest (RF) model was overall the best in terms of predictive performance, with the AUC of 0.844 (95% confidence interval [CI]: 0.826–0.862) in the development cohort and 0.786 (95% CI: 0.754–0.818) in the validation cohort for predicting mortality. Twelve baseline variables contributing to mortality prediction in the RF model were C‐reactive protein, PD‐L1 level, cancer type, prior liver metastasis, derived neutrophil‐to‐lymphocyte ratio, alkaline phosphatase, albumin, hemoglobin, white blood cell count, number of metastatic sites, pulse rate, and Eastern Cooperative Oncology Group (ECOG) performance status. A total of 1782 (70.2%) patients were separated into the high‐risk and 756 (29.8%) low‐risk groups. Patients in the high‐risk group were significantly more likely to die, experience disease progression, discontinue study, and discontinue treatment than patients in the low‐risk group (all p values < 0.001). Risk groups were not associated with immune‐related adverse events and grades 3–5 treatment‐related adverse events (all p values > 0.05). CONCLUSION: RF model has good performance in mortality prediction and risk stratification for cancer patients receiving atezolizumab monotherapy.
format Online
Article
Text
id pubmed-9939114
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-99391142023-02-20 Using machine learning for mortality prediction and risk stratification in atezolizumab‐treated cancer patients: Integrative analysis of eight clinical trials Wu, Yougen Zhu, Wenyu Wang, Jing Liu, Lvwen Zhang, Wei Wang, Yang Shi, Jindong Xia, Ju Gu, Yuting Qian, Qingqing Hong, Yang Cancer Med Research Articles BACKGROUND: Few models exist to predict mortality in cancer patients receiving immunotherapy. Our aim was to build a machine learning‐based risk stratification model for predicting mortality in atezolizumab‐treated cancer patients. METHODS: Data from 2538 patients in eight atezolizumab‐treated cancer clinical trials across three cancer types (non‐small‐cell lung cancer, bladder transitional cell carcinoma, and renal cell carcinoma) were included. The whole cohort was randomly split into development and validation cohorts in a 7:3 ratio. Machine‐learning algorithms (extreme gradient boosting, random forest, logistic regression with lasso regularization, support vector machine, and K‐nearest neighbor) were applied to develop prediction models. Model performance was mainly assessed by area under the receiver operating characteristic curve (AUC) value, calibration plot, and decision curve analysis. The probability of death risk was then stratified. RESULTS: One thousand and three hundred and seventy‐nine (54.33%) patients died. The random forest (RF) model was overall the best in terms of predictive performance, with the AUC of 0.844 (95% confidence interval [CI]: 0.826–0.862) in the development cohort and 0.786 (95% CI: 0.754–0.818) in the validation cohort for predicting mortality. Twelve baseline variables contributing to mortality prediction in the RF model were C‐reactive protein, PD‐L1 level, cancer type, prior liver metastasis, derived neutrophil‐to‐lymphocyte ratio, alkaline phosphatase, albumin, hemoglobin, white blood cell count, number of metastatic sites, pulse rate, and Eastern Cooperative Oncology Group (ECOG) performance status. A total of 1782 (70.2%) patients were separated into the high‐risk and 756 (29.8%) low‐risk groups. Patients in the high‐risk group were significantly more likely to die, experience disease progression, discontinue study, and discontinue treatment than patients in the low‐risk group (all p values < 0.001). Risk groups were not associated with immune‐related adverse events and grades 3–5 treatment‐related adverse events (all p values > 0.05). CONCLUSION: RF model has good performance in mortality prediction and risk stratification for cancer patients receiving atezolizumab monotherapy. John Wiley and Sons Inc. 2022-07-24 /pmc/articles/PMC9939114/ /pubmed/35871390 http://dx.doi.org/10.1002/cam4.5060 Text en © 2022 The Authors. Cancer Medicine published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Wu, Yougen
Zhu, Wenyu
Wang, Jing
Liu, Lvwen
Zhang, Wei
Wang, Yang
Shi, Jindong
Xia, Ju
Gu, Yuting
Qian, Qingqing
Hong, Yang
Using machine learning for mortality prediction and risk stratification in atezolizumab‐treated cancer patients: Integrative analysis of eight clinical trials
title Using machine learning for mortality prediction and risk stratification in atezolizumab‐treated cancer patients: Integrative analysis of eight clinical trials
title_full Using machine learning for mortality prediction and risk stratification in atezolizumab‐treated cancer patients: Integrative analysis of eight clinical trials
title_fullStr Using machine learning for mortality prediction and risk stratification in atezolizumab‐treated cancer patients: Integrative analysis of eight clinical trials
title_full_unstemmed Using machine learning for mortality prediction and risk stratification in atezolizumab‐treated cancer patients: Integrative analysis of eight clinical trials
title_short Using machine learning for mortality prediction and risk stratification in atezolizumab‐treated cancer patients: Integrative analysis of eight clinical trials
title_sort using machine learning for mortality prediction and risk stratification in atezolizumab‐treated cancer patients: integrative analysis of eight clinical trials
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9939114/
https://www.ncbi.nlm.nih.gov/pubmed/35871390
http://dx.doi.org/10.1002/cam4.5060
work_keys_str_mv AT wuyougen usingmachinelearningformortalitypredictionandriskstratificationinatezolizumabtreatedcancerpatientsintegrativeanalysisofeightclinicaltrials
AT zhuwenyu usingmachinelearningformortalitypredictionandriskstratificationinatezolizumabtreatedcancerpatientsintegrativeanalysisofeightclinicaltrials
AT wangjing usingmachinelearningformortalitypredictionandriskstratificationinatezolizumabtreatedcancerpatientsintegrativeanalysisofeightclinicaltrials
AT liulvwen usingmachinelearningformortalitypredictionandriskstratificationinatezolizumabtreatedcancerpatientsintegrativeanalysisofeightclinicaltrials
AT zhangwei usingmachinelearningformortalitypredictionandriskstratificationinatezolizumabtreatedcancerpatientsintegrativeanalysisofeightclinicaltrials
AT wangyang usingmachinelearningformortalitypredictionandriskstratificationinatezolizumabtreatedcancerpatientsintegrativeanalysisofeightclinicaltrials
AT shijindong usingmachinelearningformortalitypredictionandriskstratificationinatezolizumabtreatedcancerpatientsintegrativeanalysisofeightclinicaltrials
AT xiaju usingmachinelearningformortalitypredictionandriskstratificationinatezolizumabtreatedcancerpatientsintegrativeanalysisofeightclinicaltrials
AT guyuting usingmachinelearningformortalitypredictionandriskstratificationinatezolizumabtreatedcancerpatientsintegrativeanalysisofeightclinicaltrials
AT qianqingqing usingmachinelearningformortalitypredictionandriskstratificationinatezolizumabtreatedcancerpatientsintegrativeanalysisofeightclinicaltrials
AT hongyang usingmachinelearningformortalitypredictionandriskstratificationinatezolizumabtreatedcancerpatientsintegrativeanalysisofeightclinicaltrials