Cargando…
Using machine learning for mortality prediction and risk stratification in atezolizumab‐treated cancer patients: Integrative analysis of eight clinical trials
BACKGROUND: Few models exist to predict mortality in cancer patients receiving immunotherapy. Our aim was to build a machine learning‐based risk stratification model for predicting mortality in atezolizumab‐treated cancer patients. METHODS: Data from 2538 patients in eight atezolizumab‐treated cance...
Autores principales: | Wu, Yougen, Zhu, Wenyu, Wang, Jing, Liu, Lvwen, Zhang, Wei, Wang, Yang, Shi, Jindong, Xia, Ju, Gu, Yuting, Qian, Qingqing, Hong, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9939114/ https://www.ncbi.nlm.nih.gov/pubmed/35871390 http://dx.doi.org/10.1002/cam4.5060 |
Ejemplares similares
-
Hematopoietic and lymphatic cancers in patients with periodontitis: a systematic review and meta-analysis
por: Wu, Yougen, et al.
Publicado: (2020) -
Immune thrombocytopenia in a small cell lung cancer patient treated with atezolizumab: a case report
por: Qiu, Guihuan, et al.
Publicado: (2022) -
Hepatocellular carcinoma with gastric adenocarcinoma treated with atezolizumab and bevacizumab
por: Suga, Takayoshi, et al.
Publicado: (2023) -
Elucidation of the Application of Blood Test Biomarkers to Predict Immune-Related Adverse Events in Atezolizumab-Treated NSCLC Patients Using Machine Learning Methods
por: Zhou, Jian-Guo, et al.
Publicado: (2022) -
Fibrolamellar hepatocellular carcinoma treated with atezolizumab and bevacizumab: two case reports
por: AL Zahrani, Ali, et al.
Publicado: (2021)