Cargando…
Applications of deep learning in understanding gene regulation
Gene regulation is a central topic in cell biology. Advances in omics technologies and the accumulation of omics data have provided better opportunities for gene regulation studies than ever before. For this reason deep learning, as a data-driven predictive modeling approach, has been successfully a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9939384/ https://www.ncbi.nlm.nih.gov/pubmed/36814848 http://dx.doi.org/10.1016/j.crmeth.2022.100384 |
_version_ | 1784890839259938816 |
---|---|
author | Li, Zhongxiao Gao, Elva Zhou, Juexiao Han, Wenkai Xu, Xiaopeng Gao, Xin |
author_facet | Li, Zhongxiao Gao, Elva Zhou, Juexiao Han, Wenkai Xu, Xiaopeng Gao, Xin |
author_sort | Li, Zhongxiao |
collection | PubMed |
description | Gene regulation is a central topic in cell biology. Advances in omics technologies and the accumulation of omics data have provided better opportunities for gene regulation studies than ever before. For this reason deep learning, as a data-driven predictive modeling approach, has been successfully applied to this field during the past decade. In this article, we aim to give a brief yet comprehensive overview of representative deep-learning methods for gene regulation. Specifically, we discuss and compare the design principles and datasets used by each method, creating a reference for researchers who wish to replicate or improve existing methods. We also discuss the common problems of existing approaches and prospectively introduce the emerging deep-learning paradigms that will potentially alleviate them. We hope that this article will provide a rich and up-to-date resource and shed light on future research directions in this area. |
format | Online Article Text |
id | pubmed-9939384 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-99393842023-02-21 Applications of deep learning in understanding gene regulation Li, Zhongxiao Gao, Elva Zhou, Juexiao Han, Wenkai Xu, Xiaopeng Gao, Xin Cell Rep Methods Review Gene regulation is a central topic in cell biology. Advances in omics technologies and the accumulation of omics data have provided better opportunities for gene regulation studies than ever before. For this reason deep learning, as a data-driven predictive modeling approach, has been successfully applied to this field during the past decade. In this article, we aim to give a brief yet comprehensive overview of representative deep-learning methods for gene regulation. Specifically, we discuss and compare the design principles and datasets used by each method, creating a reference for researchers who wish to replicate or improve existing methods. We also discuss the common problems of existing approaches and prospectively introduce the emerging deep-learning paradigms that will potentially alleviate them. We hope that this article will provide a rich and up-to-date resource and shed light on future research directions in this area. Elsevier 2023-01-11 /pmc/articles/PMC9939384/ /pubmed/36814848 http://dx.doi.org/10.1016/j.crmeth.2022.100384 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Review Li, Zhongxiao Gao, Elva Zhou, Juexiao Han, Wenkai Xu, Xiaopeng Gao, Xin Applications of deep learning in understanding gene regulation |
title | Applications of deep learning in understanding gene regulation |
title_full | Applications of deep learning in understanding gene regulation |
title_fullStr | Applications of deep learning in understanding gene regulation |
title_full_unstemmed | Applications of deep learning in understanding gene regulation |
title_short | Applications of deep learning in understanding gene regulation |
title_sort | applications of deep learning in understanding gene regulation |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9939384/ https://www.ncbi.nlm.nih.gov/pubmed/36814848 http://dx.doi.org/10.1016/j.crmeth.2022.100384 |
work_keys_str_mv | AT lizhongxiao applicationsofdeeplearninginunderstandinggeneregulation AT gaoelva applicationsofdeeplearninginunderstandinggeneregulation AT zhoujuexiao applicationsofdeeplearninginunderstandinggeneregulation AT hanwenkai applicationsofdeeplearninginunderstandinggeneregulation AT xuxiaopeng applicationsofdeeplearninginunderstandinggeneregulation AT gaoxin applicationsofdeeplearninginunderstandinggeneregulation |