Cargando…
Design of an ultrafast pulsed ponderomotive phase plate for cryo-electron tomography
Ponderomotive phase plates have shown that temporally consistent phase contrast is possible within electron microscopes via high-fluence static laser modes resonating in Fabry-Perot cavities. Here, we explore using pulsed laser beams as an alternative method of generating high fluences. We find thro...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9939428/ https://www.ncbi.nlm.nih.gov/pubmed/36814846 http://dx.doi.org/10.1016/j.crmeth.2022.100387 |
Sumario: | Ponderomotive phase plates have shown that temporally consistent phase contrast is possible within electron microscopes via high-fluence static laser modes resonating in Fabry-Perot cavities. Here, we explore using pulsed laser beams as an alternative method of generating high fluences. We find through forward-stepping finite element models that picosecond or shorter interactions are required for meaningful fluences and phase shifts, with higher pulse energies and smaller beam waists leading to predicted higher fluences. An additional model based on quasi-classical assumptions is used to discover the shape of the phase plate by incorporating the oscillatory nature of the electric field. From these results, we find the transient nature of the laser pulses removes the influence of Kapitza-Dirac diffraction patterns that appear in the static resonator cases. We conclude by predicting that a total laser pulse energy of 8.7 μJ is enough to induce the required π/2 phase shift for Zernike-like phase microscopy. |
---|