Cargando…
Self-attention random forest for breast cancer image classification
INTRODUCTION: Early screening and diagnosis of breast cancer can not only detect hidden diseases in time, but also effectively improve the survival rate of patients. Therefore, the accurate classification of breast cancer images becomes the key to auxiliary diagnosis. METHODS: In this paper, on the...
Autores principales: | Li, Jia, Shi, Jingwen, Chen, Jianrong, Du, Ziqi, Huang, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9939756/ https://www.ncbi.nlm.nih.gov/pubmed/36814814 http://dx.doi.org/10.3389/fonc.2023.1043463 |
Ejemplares similares
-
The utility of diffusion-weighted imaging for differentiation of phyllodes tumor from fibroadenoma and breast cancer
por: Fang, Jinzhi, et al.
Publicado: (2023) -
Application of random forest based on semi-automatic parameter adjustment for optimization of anti-breast cancer drugs
por: Liu, Jiajia, et al.
Publicado: (2022) -
Rewiring of the Endocrine Network in Triple-Negative Breast Cancer
por: Li, Kaixuan, et al.
Publicado: (2022) -
Detection and Classification of Breast Lesions With Readout-Segmented Diffusion-Weighted Imaging in a Large Chinese Cohort
por: Yang, Zhen Lu, et al.
Publicado: (2021) -
Qualitative Classification of Shear Wave Elastography for Differential Diagnosis Between Benign and Metastatic Axillary Lymph Nodes in Breast Cancer
por: Luo, Shuyi, et al.
Publicado: (2019)