Cargando…
Elucidation of the (R)-enantiospecific benzylisoquinoline alkaloid biosynthetic pathways in sacred lotus (Nelumbo nucifera)
Benzylisoquinoline alkaloids (BIAs) are a structurally diverse group of plant specialized metabolites found mainly in members of the order Ranunculales, including opium poppy (Papaver somniferum), for which BIA biosynthetic pathways leading to the critical drugs morphine, noscapine, and sanguinarine...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9940101/ https://www.ncbi.nlm.nih.gov/pubmed/36805479 http://dx.doi.org/10.1038/s41598-023-29415-0 |
Sumario: | Benzylisoquinoline alkaloids (BIAs) are a structurally diverse group of plant specialized metabolites found mainly in members of the order Ranunculales, including opium poppy (Papaver somniferum), for which BIA biosynthetic pathways leading to the critical drugs morphine, noscapine, and sanguinarine have been elucidated. Sacred lotus (Nelumbo nucifera), in the order Proteales, accumulates medicinal BIAs in the proaporphine, aporphine, and bisbenzylisoquinoline structural subgroups with a prevalence of R enantiomers, opposed to the dominant S configuration occurring in the Ranunculales. Nevertheless, distinctive BIA biosynthetic routes in sacred lotus have not been explored. In planta labeling experiments and in vitro assays with recombinant enzymes and plant protein extracts showed that dopamine and 4-hydroxyphenylacetaldehyde derived from l-tyrosine serve as precursors for the formation of (R,S)-norcoclaurine in sacred lotus, whereas only (R)-norcoclaurine byproducts are favored in the plant by action of R-enantiospecific methyltransferases and cytochrome P450 oxidoreductases (CYPs). Enzymes responsible for the R-enantiospecific formation of proaporphine (NnCYP80Q1) and bisbenzylisoquinoline (NnCYP80Q2) scaffolds, and a methylenedioxy bridge introduction on aporphine substrates (NnCYP719A22) were identified, whereas additional aspects of the biosynthetic pathways leading to the distinctive alkaloid profile are discussed. This work expands the availability of molecular tools that can be deployed in synthetic biology platforms for the production of high-value alkaloids. |
---|