Cargando…

Generalized Many-Body Dispersion Correction through Random-Phase Approximation for Chemically Accurate Density Functional Theory

[Image: see text] We extend our recently proposed Deep Learning-aided many-body dispersion (DNN-MBD) model to quadrupole polarizability (Q) terms using a generalized Random Phase Approximation (RPA) formalism, thus enabling the inclusion of van der Waals contributions beyond dipole. The resulting DN...

Descripción completa

Detalles Bibliográficos
Autores principales: Poier, Pier Paolo, Adjoua, Olivier, Lagardère, Louis, Piquemal, Jean-Philip
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9940194/
https://www.ncbi.nlm.nih.gov/pubmed/36749715
http://dx.doi.org/10.1021/acs.jpclett.2c03722
Descripción
Sumario:[Image: see text] We extend our recently proposed Deep Learning-aided many-body dispersion (DNN-MBD) model to quadrupole polarizability (Q) terms using a generalized Random Phase Approximation (RPA) formalism, thus enabling the inclusion of van der Waals contributions beyond dipole. The resulting DNN-MBDQ model only relies on ab initio-derived quantities as the introduced quadrupole polarizabilities are recursively retrieved from dipole ones, in turn modeled via the Tkatchenko–Scheffler method. A transferable and efficient deep-neuronal network (DNN) provides atom-in-molecule volumes, while a single range-separation parameter is used to couple the model to Density Functional Theory (DFT). Since it can be computed at a negligible cost, the DNN-MBDQ approach can be coupled with DFT functionals, such as PBE, PBE0, and B86bPBE (dispersionless). The DNN-MBQ-corrected functionals reach chemical accuracy while exhibiting lower errors compared to their dipole-only counterparts.