Cargando…
Generalized Many-Body Dispersion Correction through Random-Phase Approximation for Chemically Accurate Density Functional Theory
[Image: see text] We extend our recently proposed Deep Learning-aided many-body dispersion (DNN-MBD) model to quadrupole polarizability (Q) terms using a generalized Random Phase Approximation (RPA) formalism, thus enabling the inclusion of van der Waals contributions beyond dipole. The resulting DN...
Autores principales: | Poier, Pier Paolo, Adjoua, Olivier, Lagardère, Louis, Piquemal, Jean-Philip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9940194/ https://www.ncbi.nlm.nih.gov/pubmed/36749715 http://dx.doi.org/10.1021/acs.jpclett.2c03722 |
Ejemplares similares
-
Atomistic Polarizable Embeddings: Energy, Dynamics,
Spectroscopy, and Reactivity
por: Loco, Daniele, et al.
Publicado: (2021) -
Scalable hybrid deep neural networks/polarizable potentials biomolecular simulations including long-range effects
por: Jaffrelot Inizan, Théo, et al.
Publicado: (2023) -
Truncated Conjugate Gradient: An Optimal Strategy
for the Analytical Evaluation of the Many-Body Polarization Energy
and Forces in Molecular Simulations
por: Aviat, Félix, et al.
Publicado: (2016) -
Efficient and Accurate Description of Diels‐Alder Reactions Using Density Functional Theory
por: Loco, Daniele, et al.
Publicado: (2022) -
Force-field-enhanced neural network interactions: from local equivariant embedding to atom-in-molecule properties and long-range effects
por: Plé, Thomas, et al.
Publicado: (2023)