Cargando…
DrugEx v3: scaffold-constrained drug design with graph transformer-based reinforcement learning
Rational drug design often starts from specific scaffolds to which side chains/substituents are added or modified due to the large drug-like chemical space available to search for novel drug-like molecules. With the rapid growth of deep learning in drug discovery, a variety of effective approaches h...
Autores principales: | Liu, Xuhan, Ye, Kai, van Vlijmen, Herman W. T., IJzerman, Adriaan P., van Westen, Gerard J. P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9940339/ https://www.ncbi.nlm.nih.gov/pubmed/36803659 http://dx.doi.org/10.1186/s13321-023-00694-z |
Ejemplares similares
-
DrugEx v2: de novo design of drug molecules by Pareto-based multi-objective reinforcement learning in polypharmacology
por: Liu, Xuhan, et al.
Publicado: (2021) -
DrugEx: Deep Learning Models and Tools for Exploration
of Drug-Like Chemical Space
por: Šícho, Martin, et al.
Publicado: (2023) -
An exploration strategy improves the diversity of de novo ligands using deep reinforcement learning: a case for the adenosine A(2A) receptor
por: Liu, Xuhan, et al.
Publicado: (2019) -
Quantitative prediction of selectivity between the A(1) and A(2A) adenosine receptors
por: Burggraaff, Lindsey, et al.
Publicado: (2020) -
Significantly Improved HIV Inhibitor Efficacy Prediction Employing Proteochemometric Models Generated From Antivirogram Data
por: van Westen, Gerard J. P., et al.
Publicado: (2013)