Cargando…
Multimodal representation learning for predicting molecule–disease relations
MOTIVATION: Predicting molecule–disease indications and side effects is important for drug development and pharmacovigilance. Comprehensively mining molecule–molecule, molecule–disease and disease–disease semantic dependencies can potentially improve prediction performance. METHODS: We introduce a M...
Autores principales: | Wen, Jun, Zhang, Xiang, Rush, Everett, Panickan, Vidul A, Li, Xingyu, Cai, Tianrun, Zhou, Doudou, Ho, Yuk-Lam, Costa, Lauren, Begoli, Edmon, Hong, Chuan, Gaziano, J Michael, Cho, Kelly, Lu, Junwei, Liao, Katherine P, Zitnik, Marinka, Cai, Tianxi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9940625/ https://www.ncbi.nlm.nih.gov/pubmed/36805623 http://dx.doi.org/10.1093/bioinformatics/btad085 |
Ejemplares similares
-
ARCH: Large-scale Knowledge Graph via Aggregated Narrative Codified Health Records Analysis
por: Gan, Ziming, et al.
Publicado: (2023) -
Clinical knowledge extraction via sparse embedding regression (KESER) with multi-center large scale electronic health record data
por: Hong, Chuan, et al.
Publicado: (2021) -
Unified Medical Language System resources improve sieve-based generation and Bidirectional Encoder Representations from Transformers (BERT)–based ranking for concept normalization
por: Xu, Dongfang, et al.
Publicado: (2020) -
Generate Analysis-Ready Data for Real-world Evidence: Tutorial for Harnessing Electronic Health Records With Advanced Informatic Technologies
por: Hou, Jue, et al.
Publicado: (2023) -
sciCAN: single-cell chromatin accessibility and gene expression data integration via cycle-consistent adversarial network
por: Xu, Yang, et al.
Publicado: (2022)