Cargando…
IV-GNN : interval valued data handling using graph neural network
Interval-valued data is an effective way to represent complex information where uncertainty, inaccuracy etc. are involved in the data space and they are worthy of taking into account. Interval analysis together with neural network has proven to work well on Euclidean data. However, in real-life scen...
Autores principales: | Dawn, Sucheta, Bandyopadhyay, Sanghamitra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9940678/ https://www.ncbi.nlm.nih.gov/pubmed/36845996 http://dx.doi.org/10.1007/s10489-022-03780-1 |
Ejemplares similares
-
TSI-GNN: Extending Graph Neural Networks to Handle Missing Data in Temporal Settings
por: Gordon, David, et al.
Publicado: (2021) -
Graph Neural Network(GNN) Inference of FPGA
por: Fuad, Kazi Ahmed Asif
Publicado: (2019) -
Auto-GNN: Neural architecture search of graph neural networks
por: Zhou, Kaixiong, et al.
Publicado: (2022) -
GNN-surv: Discrete-Time Survival Prediction Using Graph Neural Networks
por: Kim, So Yeon
Publicado: (2023) -
Barriers for the performance of graph neural networks (GNN) in discrete random structures
por: Gamarnik, David
Publicado: (2023)