Cargando…
Medical Application of Geometric Deep Learning for the Diagnosis of Glaucoma
PURPOSE: (1) To assess the performance of geometric deep learning in diagnosing glaucoma from a single optical coherence tomography (OCT) scan of the optic nerve head and (2) to compare its performance to that obtained with a three-dimensional (3D) convolutional neural network (CNN), and with a gold...
Autores principales: | Thiéry, Alexandre H., Braeu, Fabian, Tun, Tin A., Aung, Tin, Girard, Michaël J. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9940771/ https://www.ncbi.nlm.nih.gov/pubmed/36790820 http://dx.doi.org/10.1167/tvst.12.2.23 |
Ejemplares similares
-
Graph embedding and geometric deep learning relevance to network biology and structural chemistry
por: Lecca, Paola, et al.
Publicado: (2023) -
Pointwise Visual Field Estimation From Optical Coherence Tomography in Glaucoma Using Deep Learning
por: Hemelings, Ruben, et al.
Publicado: (2022) -
Can Glaucoma Suspect Data Help to Improve the Performance of Glaucoma Diagnosis?
por: Abbasi, Ashkan, et al.
Publicado: (2023) -
Artifact Correction in Retinal Nerve Fiber Layer Thickness Maps Using Deep Learning and Its Clinical Utility in Glaucoma
por: Shi, Min, et al.
Publicado: (2023) -
Knowledge distillation in deep learning and its applications
por: Alkhulaifi, Abdolmaged, et al.
Publicado: (2021)