Cargando…

Ultra-/Small Angle X-ray Scattering (USAXS/SAXS) and Static Light Scattering (SLS) Modeling as a Tool to Determine Structural Changes and Effect on Growth in S. epidermidis

[Image: see text] Usually, to characterize bacterial cells’ susceptibility to antimicrobials, basic microbiology techniques such as serial dilutions or disk assays are used. In this work, we present an approach focused on combining static light scattering (SLS) and ultra-/small angle X-ray scatterin...

Descripción completa

Detalles Bibliográficos
Autores principales: Duarte, Hugo, Gummel, Jeremie, Robles, Eric, Berti, Debora, Fratini, Emiliano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9940853/
https://www.ncbi.nlm.nih.gov/pubmed/35905477
http://dx.doi.org/10.1021/acsabm.2c00218
Descripción
Sumario:[Image: see text] Usually, to characterize bacterial cells’ susceptibility to antimicrobials, basic microbiology techniques such as serial dilutions or disk assays are used. In this work, we present an approach focused on combining static light scattering (SLS) and ultra-/small angle X-ray scattering (USAXS/SAXS). This approach was used to support microbiology techniques, with the aim of understanding the structural changes caused to bacteria when they are exposed to different stresses like pH, oxidation, and surfactants. Using USAXS/SAXS and SLS data, we developed a detailed multiscale model for a Gram-positive bacterium, S. epidermidis, and we extracted information regarding changes in the overall size and cell thickness induced by different stresses (i.e., pH and hydrogen peroxide). Increasing the concentration of hydrogen peroxide leads to a progressive reduction in cell wall thickness. Moreover, the concomitant use of pH and hydrogen peroxide provides evidence for a synergy in inhibiting the S. epidermidis growth. These promising results will be used as a starting base to further investigate more complex formulations and improve/refine the data modeling of bacteria in the small angle scattering regime.