Cargando…
Electrocardiogram-based deep learning improves outcome prediction following cardiac resynchronization therapy
AIMS: This study aims to identify and visualize electrocardiogram (ECG) features using an explainable deep learning–based algorithm to predict cardiac resynchronization therapy (CRT) outcome. Its performance is compared with current guideline ECG criteria and QRS(AREA). METHODS AND RESULTS: A deep l...
Autores principales: | Wouters, Philippe C, van de Leur, Rutger R, Vessies, Melle B, van Stipdonk, Antonius M W, Ghossein, Mohammed A, Hassink, Rutger J, Doevendans, Pieter A, van der Harst, Pim, Maass, Alexander H, Prinzen, Frits W, Vernooy, Kevin, Meine, Mathias, van Es, René |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9940988/ https://www.ncbi.nlm.nih.gov/pubmed/36342291 http://dx.doi.org/10.1093/eurheartj/ehac617 |
Ejemplares similares
-
Vectorcardiographic QRS area as a predictor of response to cardiac resynchronization therapy
por: Ghossein, Mohammed A, et al.
Publicado: (2022) -
Reduction in the QRS area after cardiac resynchronization therapy is associated with survival and echocardiographic response
por: Ghossein, Mohammed A., et al.
Publicado: (2021) -
Uncertainty estimation for deep learning-based automated analysis of 12-lead electrocardiograms
por: Vranken, Jeroen F, et al.
Publicado: (2021) -
Variational auto-encoders improve explainability over currently employed heatmap methods for deep learning-based interpretation of the electrocardiogram
por: van de Leur, Rutger R, et al.
Publicado: (2022) -
Electrocardiogram Devices for Home Use: Technological and Clinical Scoping Review
por: Zepeda-Echavarria, Alejandra, et al.
Publicado: (2023)