Cargando…
Characterising paediatric mortality during and after acute illness in Sub-Saharan Africa and South Asia: a secondary analysis of the CHAIN cohort using a machine learning approach
BACKGROUND: A better understanding of which children are likely to die during acute illness will help clinicians and policy makers target resources at the most vulnerable children. We used machine learning to characterise mortality in the 30-days following admission and the 180-days after discharge...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9941052/ https://www.ncbi.nlm.nih.gov/pubmed/36825237 http://dx.doi.org/10.1016/j.eclinm.2023.101838 |
Ejemplares similares
-
Use of unsupervised machine learning to characterise HIV predictors in sub-Saharan Africa
por: Mutai, Charles K., et al.
Publicado: (2023) -
Paediatric emergencies in sub-Saharan Africa()
por: Molyneux, Elizabeth M., et al.
Publicado: (2017) -
Hospital delivery and neonatal mortality in 37 countries in sub-Saharan Africa and South Asia: An ecological study
por: Gage, Anna D., et al.
Publicado: (2021) -
Divergent age patterns of under-5 mortality in south Asia and sub-Saharan Africa: a modelling study
por: Verhulst, Andrea, et al.
Publicado: (2022) -
Correlates of and Barriers to the Utilization of Health Services for Delivery in South Asia and Sub-Saharan Africa
por: Tey, Nai-Peng, et al.
Publicado: (2013)