Cargando…
Using weather factors and google data to predict COVID-19 transmission in Melbourne, Australia: A time-series predictive model
BACKGROUND: Forecast models have been essential in understanding COVID-19 transmission and guiding public health responses throughout the pandemic. This study aims to assess the effect of weather variability and Google data on COVID-19 transmission and develop multivariable time series AutoRegressiv...
Autores principales: | McClymont, Hannah, Si, Xiaohan, Hu, Wenbiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9941072/ https://www.ncbi.nlm.nih.gov/pubmed/36845036 http://dx.doi.org/10.1016/j.heliyon.2023.e13782 |
Ejemplares similares
-
Weather variability and transmissibility of COVID-19: a time series analysis based on effective reproductive number
por: Nevels, Michael, et al.
Publicado: (2021) -
Weather Variability and COVID-19 Transmission: A Review of Recent Research
por: McClymont, Hannah, et al.
Publicado: (2021) -
Future perspectives of emerging infectious diseases control: A One Health approach
por: McClymont, Hannah, et al.
Publicado: (2022) -
Epidemic Features of COVID-19 and Potential Impact of Hospital Strain During the Omicron Wave — Australia, 2022
por: Yang, Jingli, et al.
Publicado: (2023) -
Developing a Time Series Predictive Model for Dengue in Zhongshan, China Based on Weather and Guangzhou Dengue Surveillance Data
por: Zhang, Yingtao, et al.
Publicado: (2016)