Cargando…
Bimodal CNN for cardiovascular disease classification by co-training ECG grayscale images and scalograms
This study aimed to develop a bimodal convolutional neural network (CNN) by co-training grayscale images and scalograms of ECG for cardiovascular disease classification. The bimodal CNN model was developed using a 12-lead ECG database collected from Chapman University and Shaoxing People's Hosp...
Autores principales: | Yoon, Taeyoung, Kang, Daesung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9941114/ https://www.ncbi.nlm.nih.gov/pubmed/36804469 http://dx.doi.org/10.1038/s41598-023-30208-8 |
Ejemplares similares
-
A novel proposed CNN–SVM architecture for ECG scalograms classification
por: Ozaltin, Oznur, et al.
Publicado: (2022) -
Centrifugal Pump Fault Diagnosis Based on a Novel SobelEdge Scalogram and CNN
por: Zaman, Wasim, et al.
Publicado: (2023) -
Multi-Modal Stacking Ensemble for the Diagnosis of Cardiovascular Diseases
por: Yoon, Taeyoung, et al.
Publicado: (2023) -
Classification of Health Structural Indicators Using Scalogram Model in Golestan Province, Northern Iran
por: Bahadori, M, et al.
Publicado: (2012) -
COVID-19 cough sound symptoms classification from scalogram image representation using deep learning models
por: Loey, Mohamed, et al.
Publicado: (2021)