Cargando…
Machine learning analysis of complex late gadolinium enhancement patterns to improve risk prediction of major arrhythmic events
BACKGROUND: Machine learning analysis of complex myocardial scar patterns affords the potential to enhance risk prediction of life-threatening arrhythmia in stable coronary artery disease (CAD). OBJECTIVE: To assess the utility of computational image analysis, alongside a machine learning (ML) appro...
Autores principales: | Zaidi, Hassan A., Jones, Richard E., Hammersley, Daniel J., Hatipoglu, Suzan, Balaban, Gabriel, Mach, Lukas, Halliday, Brian P., Lamata, Pablo, Prasad, Sanjay K., Bishop, Martin J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9941157/ https://www.ncbi.nlm.nih.gov/pubmed/36824460 http://dx.doi.org/10.3389/fcvm.2023.1082778 |
Ejemplares similares
-
Left ventricular shape remodelling predicts major arrhythmic events in stable coronary artery disease
por: Zaidi, H, et al.
Publicado: (2023) -
Advanced 3D analysis of fibrotic ring-like pattern in non-ischemic cardiomyopathy predicts major arrhythmic events
por: Zaidi, H, et al.
Publicado: (2023) -
Left ventricular shape predicts arrhythmic risk in fibrotic dilated cardiomyopathy
por: Balaban, Gabriel, et al.
Publicado: (2021) -
Comprehensive Phenotypic Characterization of Late Gadolinium Enhancement Predicts Sudden Cardiac Death in Coronary Artery Disease
por: Jones, Richard E., et al.
Publicado: (2023) -
Late-Gadolinium Enhancement Interface Area and Electrophysiological Simulations Predict Arrhythmic Events in Patients With Nonischemic Dilated Cardiomyopathy
por: Balaban, Gabriel, et al.
Publicado: (2021)