Cargando…
Optimizing the operation strategy of a combined cooling, heating and power system based on energy storage technology
Energy storage technology is the key to achieving a carbon emission policy. The purpose of the paper is to improve the overall performance of the combined cooling, heating and power-ground source heat pump (CCHP-GSHP) system by the battery. A new operation strategy (the two-point operation) is propo...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9941197/ https://www.ncbi.nlm.nih.gov/pubmed/36804994 http://dx.doi.org/10.1038/s41598-023-29938-6 |
Sumario: | Energy storage technology is the key to achieving a carbon emission policy. The purpose of the paper is to improve the overall performance of the combined cooling, heating and power-ground source heat pump (CCHP-GSHP) system by the battery. A new operation strategy (the two-point operation) is proposed by controlling the power generation unit work. The power generation unit has two operation modes of non-operation and rated efficiency operation by the storage electricity battery. The new operation strategy is compared with the traditional CCHP-GSHP that without a battery. The optimization goals include the primary energy saving ratio, the reduction ratio of carbon dioxide emissions, and the annual total cost saving ratio. The independent GSHP system is used as a reference system. Multipopulation genetic algorithms are selected to achieve the problem of optimization. A hotel building is selected for a case study. The optimal configuration of the coupling system is computed following the electric load strategy. Finally, the results show that the CCHP-GSHP system has a better performance under the new operation strategy compared with the traditional CCHP-GSHP (the primary energy saving ratio increases by 5.5%; the annual carbon dioxide emission reduction ratio increases by 1%; the annual total cost reduction ratio increases by 5.1%). This paper provides reference and suggestions for the integration and operation strategy of CCHP-GSHP in the future. |
---|