Cargando…

Restricting sugar or carbohydrate intake does not impact physical activity level or energy intake over 24 h despite changes in substrate use: a randomised crossover study in healthy men and women

PURPOSE: To determine the effects of dietary sugar or carbohydrate restriction on physical activity energy expenditure, energy intake, and physiological outcomes across 24 h. METHODS: In a randomized, open-label crossover design, twenty-five healthy men (n = 10) and women (n = 15) consumed three die...

Descripción completa

Detalles Bibliográficos
Autores principales: Hengist, Aaron, Davies, Russell G., Rogers, Peter J., Brunstrom, Jeff M., van Loon, Luc J. C., Walhin, Jean-Philippe, Thompson, Dylan, Koumanov, Françoise, Betts, James A., Gonzalez, Javier T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9941259/
https://www.ncbi.nlm.nih.gov/pubmed/36326863
http://dx.doi.org/10.1007/s00394-022-03048-x
Descripción
Sumario:PURPOSE: To determine the effects of dietary sugar or carbohydrate restriction on physical activity energy expenditure, energy intake, and physiological outcomes across 24 h. METHODS: In a randomized, open-label crossover design, twenty-five healthy men (n = 10) and women (n = 15) consumed three diets over a 24-h period: moderate carbohydrate and sugar content (MODSUG = 50% carbohydrate [20% sugars], 15% protein, 35% fat); low sugar content (LOWSUG = 50% carbohydrate [< 5% sugars], 15% protein, 35% fat); and low carbohydrate content (LOWCHO = 8% carbohydrate [< 5% sugars], 15% protein, 77% fat). Postprandial metabolic responses to a prescribed breakfast (20% EI) were monitored under laboratory conditions before an ad libitum test lunch, with subsequent diet and physical activity monitoring under free-living conditions until blood sample collection the following morning. RESULTS: The MODSUG, LOWSUG and LOWCHO diets resulted in similar mean [95%CI] rates of both physical activity energy expenditure (771 [624, 919] vs. 677 [565, 789] vs. 802 [614, 991] kcal·d(−1); p = 0.29] and energy intake (2071 [1794, 2347] vs. 2195 [1918, 2473] vs. 2194 [1890, 2498] kcal·d(−1); P = 0.34), respectively. The LOWCHO condition elicited the lowest glycaemic and insulinaemic responses to breakfast (P < 0.01) but the highest 24-h increase in LDL-cholesterol concentrations (P < 0.001), with no differences between the MODSUG and LOWSUG treatments. Leptin concentrations decreased over 24-h of consuming LOWCHO relative to LOWSUG (p < 0.01). CONCLUSION: When energy density is controlled for, restricting either sugar or total dietary carbohydrate does not modulate physical activity level or energy intake over a 24-h period (~ 19-h free-living) despite substantial metabolic changes. CLINICAL TRIALS REGISTRATION ID: NCT03509610, https://clinicaltrials.gov/show/NCT03509610 SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00394-022-03048-x.