Cargando…

Rapid prototyping mixed-signal development kit for tactile neural computing

Intelligent sensor systems are essential for building modern Internet of Things applications. Embedding intelligence within or near sensors provides a strong case for analog neural computing. However, rapid prototyping of analog or mixed signal spiking neural computing is a non-trivial and time-cons...

Descripción completa

Detalles Bibliográficos
Autores principales: Mallan, Vasudev S., Gopi, Anitha, Reghuvaran, Chithra, Radhakrishnan, Aswani A., James, Alex
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9941318/
https://www.ncbi.nlm.nih.gov/pubmed/36824217
http://dx.doi.org/10.3389/fnins.2023.1118615
Descripción
Sumario:Intelligent sensor systems are essential for building modern Internet of Things applications. Embedding intelligence within or near sensors provides a strong case for analog neural computing. However, rapid prototyping of analog or mixed signal spiking neural computing is a non-trivial and time-consuming task. We introduce mixed-mode neural computing arrays for near-sensor-intelligent computing implemented with Field-Programmable Analog Arrays (FPAA) and Field-Programmable Gate Arrays (FPGA). The combinations of FPAA and FPGA pipelines ensure rapid prototyping and design optimization before finalizing the on-chip implementations. The proposed approach architecture ensures a scalable neural network testing framework along with sensor integration. The experimental set up of the proposed tactile sensing system in demonstrated. The initial simulations are carried out in SPICE, and the real-time implementation is validated on FPAA and FPGA hardware.