Cargando…
Unsupervised anomaly detection with generative adversarial networks in mammography
Breast cancer is a common cancer among women, and screening mammography is the primary tool for diagnosing this condition. Recent advancements in deep-learning technologies have triggered the implementation of research studies via mammography. Semi-supervised or unsupervised methods are often used t...
Autores principales: | Park, Seungju, Lee, Kyung Hwa, Ko, Beomseok, Kim, Namkug |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9941466/ https://www.ncbi.nlm.nih.gov/pubmed/36805637 http://dx.doi.org/10.1038/s41598-023-29521-z |
Ejemplares similares
-
Publisher Correction: Unsupervised anomaly detection with generative adversarial networks in mammography
por: Park, Seungju, et al.
Publicado: (2023) -
Unsupervised Anomaly Detection of Healthcare Providers Using Generative Adversarial Networks
por: Naidoo, Krishnan, et al.
Publicado: (2020) -
Detecting Anomaly Event in Video Based on Generative Adversarial Network
por: Zhang, Zhaoxian
Publicado: (2022) -
Efficient Anomaly Detection with Generative Adversarial Network for Breast Ultrasound Imaging
por: Fujioka, Tomoyuki, et al.
Publicado: (2020) -
Quantum Generative Adversarial Networks For Anomaly Detection In High Energy Physics
por: Bermot, Elie, et al.
Publicado: (2023)