Cargando…
Detecting Tweets Containing Cannabidiol-Related COVID-19 Misinformation Using Transformer Language Models and Warning Letters From Food and Drug Administration: Content Analysis and Identification
BACKGROUND: COVID-19 has introduced yet another opportunity to web-based sellers of loosely regulated substances, such as cannabidiol (CBD), to promote sales under false pretenses of curing the disease. Therefore, it has become necessary to innovate ways to identify such instances of misinformation....
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9941900/ https://www.ncbi.nlm.nih.gov/pubmed/36844029 http://dx.doi.org/10.2196/38390 |
_version_ | 1784891384608587776 |
---|---|
author | Turner, Jason Kantardzic, Mehmed Vickers-Smith, Rachel Brown, Andrew G |
author_facet | Turner, Jason Kantardzic, Mehmed Vickers-Smith, Rachel Brown, Andrew G |
author_sort | Turner, Jason |
collection | PubMed |
description | BACKGROUND: COVID-19 has introduced yet another opportunity to web-based sellers of loosely regulated substances, such as cannabidiol (CBD), to promote sales under false pretenses of curing the disease. Therefore, it has become necessary to innovate ways to identify such instances of misinformation. OBJECTIVE: We sought to identify COVID-19 misinformation as it relates to the sales or promotion of CBD and used transformer-based language models to identify tweets semantically similar to quotes taken from known instances of misinformation. In this case, the known misinformation was the publicly available Warning Letters from Food and Drug Administration (FDA). METHODS: We collected tweets using CBD- and COVID-19–related terms. Using a previously trained model, we extracted the tweets indicating commercialization and sales of CBD and annotated those containing COVID-19 misinformation according to the FDA definitions. We encoded the collection of tweets and misinformation quotes into sentence vectors and then calculated the cosine similarity between each quote and each tweet. This allowed us to establish a threshold to identify tweets that were making false claims regarding CBD and COVID-19 while minimizing the instances of false positives. RESULTS: We demonstrated that by using quotes taken from Warning Letters issued by FDA to perpetrators of similar misinformation, we can identify semantically similar tweets that also contain misinformation. This was accomplished by identifying a cosine distance threshold between the sentence vectors of the Warning Letters and tweets. CONCLUSIONS: This research shows that commercial CBD or COVID-19 misinformation can potentially be identified and curbed using transformer-based language models and known prior instances of misinformation. Our approach functions without the need for labeled data, potentially reducing the time at which misinformation can be identified. Our approach shows promise in that it is easily adapted to identify other forms of misinformation related to loosely regulated substances. |
format | Online Article Text |
id | pubmed-9941900 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-99419002023-02-22 Detecting Tweets Containing Cannabidiol-Related COVID-19 Misinformation Using Transformer Language Models and Warning Letters From Food and Drug Administration: Content Analysis and Identification Turner, Jason Kantardzic, Mehmed Vickers-Smith, Rachel Brown, Andrew G JMIR Infodemiology Original Paper BACKGROUND: COVID-19 has introduced yet another opportunity to web-based sellers of loosely regulated substances, such as cannabidiol (CBD), to promote sales under false pretenses of curing the disease. Therefore, it has become necessary to innovate ways to identify such instances of misinformation. OBJECTIVE: We sought to identify COVID-19 misinformation as it relates to the sales or promotion of CBD and used transformer-based language models to identify tweets semantically similar to quotes taken from known instances of misinformation. In this case, the known misinformation was the publicly available Warning Letters from Food and Drug Administration (FDA). METHODS: We collected tweets using CBD- and COVID-19–related terms. Using a previously trained model, we extracted the tweets indicating commercialization and sales of CBD and annotated those containing COVID-19 misinformation according to the FDA definitions. We encoded the collection of tweets and misinformation quotes into sentence vectors and then calculated the cosine similarity between each quote and each tweet. This allowed us to establish a threshold to identify tweets that were making false claims regarding CBD and COVID-19 while minimizing the instances of false positives. RESULTS: We demonstrated that by using quotes taken from Warning Letters issued by FDA to perpetrators of similar misinformation, we can identify semantically similar tweets that also contain misinformation. This was accomplished by identifying a cosine distance threshold between the sentence vectors of the Warning Letters and tweets. CONCLUSIONS: This research shows that commercial CBD or COVID-19 misinformation can potentially be identified and curbed using transformer-based language models and known prior instances of misinformation. Our approach functions without the need for labeled data, potentially reducing the time at which misinformation can be identified. Our approach shows promise in that it is easily adapted to identify other forms of misinformation related to loosely regulated substances. JMIR Publications 2023-01-23 /pmc/articles/PMC9941900/ /pubmed/36844029 http://dx.doi.org/10.2196/38390 Text en ©Jason Turner, Mehmed Kantardzic, Rachel Vickers-Smith, Andrew G Brown. Originally published in JMIR Infodemiology (https://infodemiology.jmir.org), 23.01.2023. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Infodemiology, is properly cited. The complete bibliographic information, a link to the original publication on https://infodemiology.jmir.org/, as well as this copyright and license information must be included. |
spellingShingle | Original Paper Turner, Jason Kantardzic, Mehmed Vickers-Smith, Rachel Brown, Andrew G Detecting Tweets Containing Cannabidiol-Related COVID-19 Misinformation Using Transformer Language Models and Warning Letters From Food and Drug Administration: Content Analysis and Identification |
title | Detecting Tweets Containing Cannabidiol-Related COVID-19 Misinformation Using Transformer Language Models and Warning Letters From Food and Drug Administration: Content Analysis and Identification |
title_full | Detecting Tweets Containing Cannabidiol-Related COVID-19 Misinformation Using Transformer Language Models and Warning Letters From Food and Drug Administration: Content Analysis and Identification |
title_fullStr | Detecting Tweets Containing Cannabidiol-Related COVID-19 Misinformation Using Transformer Language Models and Warning Letters From Food and Drug Administration: Content Analysis and Identification |
title_full_unstemmed | Detecting Tweets Containing Cannabidiol-Related COVID-19 Misinformation Using Transformer Language Models and Warning Letters From Food and Drug Administration: Content Analysis and Identification |
title_short | Detecting Tweets Containing Cannabidiol-Related COVID-19 Misinformation Using Transformer Language Models and Warning Letters From Food and Drug Administration: Content Analysis and Identification |
title_sort | detecting tweets containing cannabidiol-related covid-19 misinformation using transformer language models and warning letters from food and drug administration: content analysis and identification |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9941900/ https://www.ncbi.nlm.nih.gov/pubmed/36844029 http://dx.doi.org/10.2196/38390 |
work_keys_str_mv | AT turnerjason detectingtweetscontainingcannabidiolrelatedcovid19misinformationusingtransformerlanguagemodelsandwarninglettersfromfoodanddrugadministrationcontentanalysisandidentification AT kantardzicmehmed detectingtweetscontainingcannabidiolrelatedcovid19misinformationusingtransformerlanguagemodelsandwarninglettersfromfoodanddrugadministrationcontentanalysisandidentification AT vickerssmithrachel detectingtweetscontainingcannabidiolrelatedcovid19misinformationusingtransformerlanguagemodelsandwarninglettersfromfoodanddrugadministrationcontentanalysisandidentification AT brownandrewg detectingtweetscontainingcannabidiolrelatedcovid19misinformationusingtransformerlanguagemodelsandwarninglettersfromfoodanddrugadministrationcontentanalysisandidentification |