Cargando…

Challenges and Future Roadmaps in Heterogeneous Electro-Fenton Process for Wastewater Treatment

The efficiency of heterogeneous electro-Fenton technology on the degradation of recalcitrant organic pollutants in wastewater is glaringly obvious. This green technology can be effectively harnessed for addressing ever-increasing water-related challenges. Due to its outstanding performance, eco-frie...

Descripción completa

Detalles Bibliográficos
Autores principales: Shokri, Aref, Nasernejad, Bahram, Sanavi Fard, Mahdi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942065/
https://www.ncbi.nlm.nih.gov/pubmed/36844633
http://dx.doi.org/10.1007/s11270-023-06139-5
Descripción
Sumario:The efficiency of heterogeneous electro-Fenton technology on the degradation of recalcitrant organic pollutants in wastewater is glaringly obvious. This green technology can be effectively harnessed for addressing ever-increasing water-related challenges. Due to its outstanding performance, eco-friendliness, easy automation, and operability over a wide range of pH, it has garnered significant attention from different wastewater treatment research communities. This review paper briefly discusses the principal mechanism of the electro-Fenton process, the crucial properties of a highly efficient heterogeneous catalyst, the heterogeneous electro-Fenton system enabled with Fe-functionalized cathodic materials, and its essential operating parameters. Moreover, the authors comprehensively explored the major challenges that prevent the commercialization of the electro-Fenton process and propose future research pathways to countervail those disconcerting challenges. Synthesizing heterogeneous catalysts by application of advanced materials for maximizing their reusability and stability, the full realization of H(2)O(2) activation mechanism, conduction of life-cycle assessment to explore environmental footprints and potential adverse effects of side-products, scale-up from lab-scale to industrial scale, and better reactor design, fabrication of electrodes with state-of-the-art technologies, using the electro-Fenton process for treatment of biological contaminants, application of different effective cells in the electro-Fenton process, hybridization of the electro-Fenton with other wastewater treatments technologies and full-scale analysis of economic costs are key recommendations which deserve considerable scholarly attention. Finally, it concludes that by implementing all the abovementioned gaps, the commercialization of electro-Fenton technology would be a realistic goal. GRAPHICAL ABSTRACT: [Image: see text]