Cargando…
Importance of Precursor Adaptability in the Assembly of Molecular Organic Cages
[Image: see text] For molecular architectures based on dynamic covalent chemistry (DCvC), strict preorganization is a paradigmatic concept and the generally accepted strategy for their rational design. This results in the creation of highly rigid building blocks which are expected to fulfill the ide...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942191/ https://www.ncbi.nlm.nih.gov/pubmed/36730713 http://dx.doi.org/10.1021/acs.joc.2c02523 |
Sumario: | [Image: see text] For molecular architectures based on dynamic covalent chemistry (DCvC), strict preorganization is a paradigmatic concept and the generally accepted strategy for their rational design. This results in the creation of highly rigid building blocks which are expected to fulfill the ideal geometry of the assembly, coming at a price that small geometric mismatches result in unpredicted and/or unproductive reaction outcomes. In this study, we show that feet of a tripodal platform have a great influence on the assembly of tetrahedral organic cages based on boronate ester formation. The aryl benzyl ether-functionalized building blocks perform significantly better than their alkyl-functionalized equivalents. Experimentally and using density functional theory geometry optimization of the cage structures, we prove that unexpectedly, this is not due to solubility but because of the enhanced capability of the aryl benzyl ether-functionalized building blocks to fit the ideal geometry of the assembly. This introduces the concept of building block adaptability to overcome geometrical mismatches in DCvC systems. |
---|