Cargando…
Estimating the serial intervals of SARS‐CoV‐2 Omicron BA.4, BA.5, and BA.2.12.1 variants in Hong Kong
Empirical evidence on the epidemiological characteristics of the emerged SARS‐CoV‐2 variants could shed light on the transmission potential of the virus and strategic outbreak control planning. In this study, by using contact tracing data collected during an Omicron‐predominant epidemic phase in Hon...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942273/ https://www.ncbi.nlm.nih.gov/pubmed/36824395 http://dx.doi.org/10.1111/irv.13105 |
Sumario: | Empirical evidence on the epidemiological characteristics of the emerged SARS‐CoV‐2 variants could shed light on the transmission potential of the virus and strategic outbreak control planning. In this study, by using contact tracing data collected during an Omicron‐predominant epidemic phase in Hong Kong, we estimated the mean serial interval of SARS‐CoV‐2 Omicron BA.4, BA.5, and BA.2.12.1 variants at 2.8 days (95% credible interval [CrI]: 1.5, 6.7), 2.7 days (95% CrI: 2.1, 3.6), and 4.4 days (95% CrI: 2.6, 7.5), respectively, with adjustment for right truncation and sampling bias. The short serial interval for the current circulating variant indicated that outbreak mitigations through contact tracing and case isolation would be quite challenging. |
---|