Cargando…
A noise-robust deep clustering of biomolecular ions improves interpretability of mass spectrometric images
MOTIVATION: Mass Spectrometry Imaging (MSI) analyzes complex biological samples such as tissues. It simultaneously characterizes the ions present in the tissue in the form of mass spectra, and the spatial distribution of the ions across the tissue in the form of ion images. Unsupervised clustering o...
Autores principales: | Guo, Dan, Föll, Melanie Christine, Bemis, Kylie Ariel, Vitek, Olga |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942547/ https://www.ncbi.nlm.nih.gov/pubmed/36744928 http://dx.doi.org/10.1093/bioinformatics/btad067 |
Ejemplares similares
-
Unsupervised segmentation of mass spectrometric ion images characterizes morphology of tissues
por: Guo, Dan, et al.
Publicado: (2019) -
Cardinal v3 - a versatile open source software for mass spectrometry imaging analysis
por: Bemis, Kylie Ariel, et al.
Publicado: (2023) -
matter: an R package for rapid prototyping with larger-than-memory datasets on disk
por: Bemis, Kylie A, et al.
Publicado: (2017) -
Spatial segmentation and feature selection for desi imaging mass spectrometry data with spatially-aware sparse clustering
por: Bemis, Kyle D, et al.
Publicado: (2012) -
Deep multiple instance learning classifies subtissue locations in mass spectrometry images from tissue-level annotations
por: Guo, Dan, et al.
Publicado: (2020)