Cargando…
Continuous modeling of creased annuli with tunable bistable and looping behaviors
Creases are purposely introduced to thin structures for designing deployable origami, artistic geometries, and functional structures with tunable nonlinear mechanics. Modeling the mechanics of creased structures is challenging because creases introduce geometric discontinuity and often have complex...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942846/ https://www.ncbi.nlm.nih.gov/pubmed/36669103 http://dx.doi.org/10.1073/pnas.2209048120 |
_version_ | 1784891586429059072 |
---|---|
author | Yu, Tian Marmo, Francesco Cesarano, Pasquale Adriaenssens, Sigrid |
author_facet | Yu, Tian Marmo, Francesco Cesarano, Pasquale Adriaenssens, Sigrid |
author_sort | Yu, Tian |
collection | PubMed |
description | Creases are purposely introduced to thin structures for designing deployable origami, artistic geometries, and functional structures with tunable nonlinear mechanics. Modeling the mechanics of creased structures is challenging because creases introduce geometric discontinuity and often have complex mechanical responses due to local material damage. In this work, we propose a continuous description of the sharp geometry of creases and apply it to the study of creased annuli, made by introducing radial creases to annular strips with the creases annealed to behave elastically. We find that creased annuli have generic bistability and can be folded into various compact shapes, depending on the crease pattern and the overcurvature of the flat annulus. We use a regularized Dirac delta function (RDDF) to describe the geometry of a crease, with the finite spike of the RDDF capturing the localized curvature. Together with anisotropic rod theory, we solve the nonlinear mechanics of creased annuli, with its stability determined by the standard conjugate point test. We find excellent agreement between precision tabletop models, numerical predictions from our analytical framework, and modeling results from finite element simulations. We further show that by varying the rest curvature of the thin strip, dynamic switches between different states of creased annuli can be achieved, which could inspire the design of deployable and morphable structures. We believe that our smooth description of discontinuous geometries will benefit the mechanical modeling and design of a wide spectrum of engineering structures that embrace geometric and material discontinuities. |
format | Online Article Text |
id | pubmed-9942846 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-99428462023-02-22 Continuous modeling of creased annuli with tunable bistable and looping behaviors Yu, Tian Marmo, Francesco Cesarano, Pasquale Adriaenssens, Sigrid Proc Natl Acad Sci U S A Physical Sciences Creases are purposely introduced to thin structures for designing deployable origami, artistic geometries, and functional structures with tunable nonlinear mechanics. Modeling the mechanics of creased structures is challenging because creases introduce geometric discontinuity and often have complex mechanical responses due to local material damage. In this work, we propose a continuous description of the sharp geometry of creases and apply it to the study of creased annuli, made by introducing radial creases to annular strips with the creases annealed to behave elastically. We find that creased annuli have generic bistability and can be folded into various compact shapes, depending on the crease pattern and the overcurvature of the flat annulus. We use a regularized Dirac delta function (RDDF) to describe the geometry of a crease, with the finite spike of the RDDF capturing the localized curvature. Together with anisotropic rod theory, we solve the nonlinear mechanics of creased annuli, with its stability determined by the standard conjugate point test. We find excellent agreement between precision tabletop models, numerical predictions from our analytical framework, and modeling results from finite element simulations. We further show that by varying the rest curvature of the thin strip, dynamic switches between different states of creased annuli can be achieved, which could inspire the design of deployable and morphable structures. We believe that our smooth description of discontinuous geometries will benefit the mechanical modeling and design of a wide spectrum of engineering structures that embrace geometric and material discontinuities. National Academy of Sciences 2023-01-20 2023-01-24 /pmc/articles/PMC9942846/ /pubmed/36669103 http://dx.doi.org/10.1073/pnas.2209048120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Physical Sciences Yu, Tian Marmo, Francesco Cesarano, Pasquale Adriaenssens, Sigrid Continuous modeling of creased annuli with tunable bistable and looping behaviors |
title | Continuous modeling of creased annuli with tunable bistable and looping behaviors |
title_full | Continuous modeling of creased annuli with tunable bistable and looping behaviors |
title_fullStr | Continuous modeling of creased annuli with tunable bistable and looping behaviors |
title_full_unstemmed | Continuous modeling of creased annuli with tunable bistable and looping behaviors |
title_short | Continuous modeling of creased annuli with tunable bistable and looping behaviors |
title_sort | continuous modeling of creased annuli with tunable bistable and looping behaviors |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942846/ https://www.ncbi.nlm.nih.gov/pubmed/36669103 http://dx.doi.org/10.1073/pnas.2209048120 |
work_keys_str_mv | AT yutian continuousmodelingofcreasedannuliwithtunablebistableandloopingbehaviors AT marmofrancesco continuousmodelingofcreasedannuliwithtunablebistableandloopingbehaviors AT cesaranopasquale continuousmodelingofcreasedannuliwithtunablebistableandloopingbehaviors AT adriaenssenssigrid continuousmodelingofcreasedannuliwithtunablebistableandloopingbehaviors |