Cargando…
Arginine–vasopressin-expressing neurons in the murine suprachiasmatic nucleus exhibit a circadian rhythm in network coherence in vivo
The suprachiasmatic nucleus (SCN) is composed of functionally distinct subpopulations of GABAergic neurons which form a neural network responsible for synchronizing most physiological and behavioral circadian rhythms in mammals. To date, little is known regarding which aspects of SCN rhythmicity are...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942887/ https://www.ncbi.nlm.nih.gov/pubmed/36656857 http://dx.doi.org/10.1073/pnas.2209329120 |
_version_ | 1784891594779918336 |
---|---|
author | Stowie, Adam Qiao, Zhimei Buonfiglio, Daniella Do Carmo Beckner, Delaney M. Ehlen, J. Christopher Benveniste, Morris Davidson, Alec J. |
author_facet | Stowie, Adam Qiao, Zhimei Buonfiglio, Daniella Do Carmo Beckner, Delaney M. Ehlen, J. Christopher Benveniste, Morris Davidson, Alec J. |
author_sort | Stowie, Adam |
collection | PubMed |
description | The suprachiasmatic nucleus (SCN) is composed of functionally distinct subpopulations of GABAergic neurons which form a neural network responsible for synchronizing most physiological and behavioral circadian rhythms in mammals. To date, little is known regarding which aspects of SCN rhythmicity are generated by individual SCN neurons, and which aspects result from neuronal interaction within a network. Here, we utilize in vivo miniaturized microscopy to measure fluorescent GCaMP-reported calcium dynamics in arginine vasopressin (AVP)-expressing neurons in the intact SCN of awake, behaving mice. We report that SCN AVP neurons exhibit periodic, slow calcium waves which we demonstrate, using in vivo electrical recordings, likely reflect burst firing. Further, we observe substantial heterogeneity of function in that AVP neurons exhibit unstable rhythms, and relatively weak rhythmicity at the population level. Network analysis reveals that correlated cellular behavior, or coherence, among neuron pairs also exhibited stochastic rhythms with about 33% of pairs rhythmic at any time. Unlike single-cell variables, coherence exhibited a strong rhythm at the population level with time of maximal coherence among AVP neuronal pairs at CT/ZT 6 and 9, coinciding with the timing of maximal neuronal activity for the SCN as a whole. These results demonstrate robust circadian variation in the coordination between stochastically rhythmic neurons and that interactions between AVP neurons in the SCN may be more influential than single-cell activity in the regulation of circadian rhythms. Furthermore, they demonstrate that cells in this circuit, like those in many other circuits, exhibit profound heterogenicity of function over time and space. |
format | Online Article Text |
id | pubmed-9942887 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-99428872023-07-19 Arginine–vasopressin-expressing neurons in the murine suprachiasmatic nucleus exhibit a circadian rhythm in network coherence in vivo Stowie, Adam Qiao, Zhimei Buonfiglio, Daniella Do Carmo Beckner, Delaney M. Ehlen, J. Christopher Benveniste, Morris Davidson, Alec J. Proc Natl Acad Sci U S A Biological Sciences The suprachiasmatic nucleus (SCN) is composed of functionally distinct subpopulations of GABAergic neurons which form a neural network responsible for synchronizing most physiological and behavioral circadian rhythms in mammals. To date, little is known regarding which aspects of SCN rhythmicity are generated by individual SCN neurons, and which aspects result from neuronal interaction within a network. Here, we utilize in vivo miniaturized microscopy to measure fluorescent GCaMP-reported calcium dynamics in arginine vasopressin (AVP)-expressing neurons in the intact SCN of awake, behaving mice. We report that SCN AVP neurons exhibit periodic, slow calcium waves which we demonstrate, using in vivo electrical recordings, likely reflect burst firing. Further, we observe substantial heterogeneity of function in that AVP neurons exhibit unstable rhythms, and relatively weak rhythmicity at the population level. Network analysis reveals that correlated cellular behavior, or coherence, among neuron pairs also exhibited stochastic rhythms with about 33% of pairs rhythmic at any time. Unlike single-cell variables, coherence exhibited a strong rhythm at the population level with time of maximal coherence among AVP neuronal pairs at CT/ZT 6 and 9, coinciding with the timing of maximal neuronal activity for the SCN as a whole. These results demonstrate robust circadian variation in the coordination between stochastically rhythmic neurons and that interactions between AVP neurons in the SCN may be more influential than single-cell activity in the regulation of circadian rhythms. Furthermore, they demonstrate that cells in this circuit, like those in many other circuits, exhibit profound heterogenicity of function over time and space. National Academy of Sciences 2023-01-19 2023-01-24 /pmc/articles/PMC9942887/ /pubmed/36656857 http://dx.doi.org/10.1073/pnas.2209329120 Text en Copyright © 2023 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Stowie, Adam Qiao, Zhimei Buonfiglio, Daniella Do Carmo Beckner, Delaney M. Ehlen, J. Christopher Benveniste, Morris Davidson, Alec J. Arginine–vasopressin-expressing neurons in the murine suprachiasmatic nucleus exhibit a circadian rhythm in network coherence in vivo |
title | Arginine–vasopressin-expressing neurons in the murine suprachiasmatic nucleus exhibit a circadian rhythm in network coherence in vivo |
title_full | Arginine–vasopressin-expressing neurons in the murine suprachiasmatic nucleus exhibit a circadian rhythm in network coherence in vivo |
title_fullStr | Arginine–vasopressin-expressing neurons in the murine suprachiasmatic nucleus exhibit a circadian rhythm in network coherence in vivo |
title_full_unstemmed | Arginine–vasopressin-expressing neurons in the murine suprachiasmatic nucleus exhibit a circadian rhythm in network coherence in vivo |
title_short | Arginine–vasopressin-expressing neurons in the murine suprachiasmatic nucleus exhibit a circadian rhythm in network coherence in vivo |
title_sort | arginine–vasopressin-expressing neurons in the murine suprachiasmatic nucleus exhibit a circadian rhythm in network coherence in vivo |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942887/ https://www.ncbi.nlm.nih.gov/pubmed/36656857 http://dx.doi.org/10.1073/pnas.2209329120 |
work_keys_str_mv | AT stowieadam argininevasopressinexpressingneuronsinthemurinesuprachiasmaticnucleusexhibitacircadianrhythminnetworkcoherenceinvivo AT qiaozhimei argininevasopressinexpressingneuronsinthemurinesuprachiasmaticnucleusexhibitacircadianrhythminnetworkcoherenceinvivo AT buonfigliodanielladocarmo argininevasopressinexpressingneuronsinthemurinesuprachiasmaticnucleusexhibitacircadianrhythminnetworkcoherenceinvivo AT becknerdelaneym argininevasopressinexpressingneuronsinthemurinesuprachiasmaticnucleusexhibitacircadianrhythminnetworkcoherenceinvivo AT ehlenjchristopher argininevasopressinexpressingneuronsinthemurinesuprachiasmaticnucleusexhibitacircadianrhythminnetworkcoherenceinvivo AT benvenistemorris argininevasopressinexpressingneuronsinthemurinesuprachiasmaticnucleusexhibitacircadianrhythminnetworkcoherenceinvivo AT davidsonalecj argininevasopressinexpressingneuronsinthemurinesuprachiasmaticnucleusexhibitacircadianrhythminnetworkcoherenceinvivo |