Cargando…
Unsupervised learning reveals interpretable latent representations for translucency perception
Humans constantly assess the appearance of materials to plan actions, such as stepping on icy roads without slipping. Visual inference of materials is important but challenging because a given material can appear dramatically different in various scenes. This problem especially stands out for transl...
Autores principales: | Liao, Chenxi, Sawayama, Masataka, Xiao, Bei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942964/ https://www.ncbi.nlm.nih.gov/pubmed/36753520 http://dx.doi.org/10.1371/journal.pcbi.1010878 |
Ejemplares similares
-
Crystal or jelly? Effect of color on the perception of translucent materials with photographs of real-world objects
por: Liao, Chenxi, et al.
Publicado: (2022) -
Effect of geometric sharpness on translucent material perception
por: Xiao, Bei, et al.
Publicado: (2020) -
Unsupervised Machine Learning Applied to Seismic Interpretation: Towards an Unsupervised Automated Interpretation Tool
por: Celecia, Alimed, et al.
Publicado: (2021) -
Unsupervised Representation Learning for Proteochemometric Modeling
por: Kim, Paul T., et al.
Publicado: (2021) -
Translucency perception: A review
por: Gigilashvili, Davit, et al.
Publicado: (2021)