Cargando…
Deep-learning-based prognostic modeling for incident heart failure in patients with diabetes using electronic health records: A retrospective cohort study
Patients with type 2 diabetes mellitus (T2DM) have more than twice the risk of developing heart failure (HF) compared to patients without diabetes. The present study is aimed to build an artificial intelligence (AI) prognostic model that takes in account a large and heterogeneous set of clinical fac...
Autores principales: | Gandin, Ilaria, Saccani, Sebastiano, Coser, Andrea, Scagnetto, Arjuna, Cappelletto, Chiara, Candido, Riccardo, Barbati, Giulia, Di Lenarda, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9943005/ https://www.ncbi.nlm.nih.gov/pubmed/36809251 http://dx.doi.org/10.1371/journal.pone.0281878 |
Ejemplares similares
-
Comparison of discrimination and calibration performance of ECG-based machine learning models for prediction of new-onset atrial fibrillation
por: Baj, Giovanni, et al.
Publicado: (2023) -
Multi-state modelling of heart failure care path: A population-based investigation from Italy
por: Gasperoni, Francesca, et al.
Publicado: (2017) -
Predicting left ventricular functional recovery in ischaemic cardiomyopathy: needs and challenges
por: Radesich, Cinzia, et al.
Publicado: (2023) -
Using marginal structural joint models to estimate the effect of a time‐varying treatment on recurrent events and survival: An application on arrhythmogenic cardiomyopathy
por: Gregorio, Caterina, et al.
Publicado: (2022) -
Sacubitril/Valsartan Induces Global Cardiac Reverse Remodeling in Long-Lasting Heart Failure with Reduced Ejection Fraction: Standard and Advanced Echocardiographic Evidences
por: Castrichini, Matteo, et al.
Publicado: (2020)