Cargando…
DRAGON: Determining Regulatory Associations using Graphical models on multi-Omic Networks
The increasing quantity of multi-omic data, such as methylomic and transcriptomic profiles collected on the same specimen or even on the same cell, provides a unique opportunity to explore the complex interactions that define cell phenotype and govern cellular responses to perturbations. We propose...
Autores principales: | Shutta, Katherine H, Weighill, Deborah, Burkholz, Rebekka, Guebila, Marouen Ben, DeMeo, Dawn L, Zacharias, Helena U, Quackenbush, John, Altenbuchinger, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9943674/ https://www.ncbi.nlm.nih.gov/pubmed/36533448 http://dx.doi.org/10.1093/nar/gkac1157 |
Ejemplares similares
-
Predicting genotype-specific gene regulatory networks
por: Weighill, Deborah, et al.
Publicado: (2022) -
gpuZoo: Cost-effective estimation of gene regulatory networks using the Graphics Processing Unit
por: Guebila, Marouen Ben, et al.
Publicado: (2022) -
Gene regulatory Networks Reveal Sex Difference in Lung Adenocarcinoma
por: Saha, Enakshi, et al.
Publicado: (2023) -
GRAND: a database of gene regulatory network models across human conditions
por: Ben Guebila, Marouen, et al.
Publicado: (2021) -
The Network Zoo: a multilingual package for the inference and analysis of gene regulatory networks
por: Ben Guebila, Marouen, et al.
Publicado: (2023)