Cargando…

Potential Haptic Perceptual Dimensionality of Rendered Compliance

Studies have proven that humans perceive haptic textures through different perceptual dimensions, such as rough/smooth and soft/hard, which provide useful guidance in the design of haptic devices. However, few of these have focused on the perception of compliance, which is another important perceptu...

Descripción completa

Detalles Bibliográficos
Autores principales: Shao, Zhiyu, Li, Jingwei, Feng, Wanlu, Tang, Hongru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9944077/
https://www.ncbi.nlm.nih.gov/pubmed/36810395
http://dx.doi.org/10.3390/biomimetics8010064
Descripción
Sumario:Studies have proven that humans perceive haptic textures through different perceptual dimensions, such as rough/smooth and soft/hard, which provide useful guidance in the design of haptic devices. However, few of these have focused on the perception of compliance, which is another important perceptual property in haptic interfaces. This research was conducted to investigate the potential basic perceptual dimensions of the rendered compliance and quantify the effects of the simulation parameters. Two perceptual experiments were designed based on 27 stimuli samples generated by a 3-DOF haptic feedback device. Subjects were asked to describe these stimuli using adjectives, classify the samples, and rate them according to corresponding adjective labels. Multi-dimensional scaling (MDS) methods were then used to project adjective ratings into 2D and 3D perception spaces. According to the results, hardness and viscosity are considered two basic perceptual dimensions of the rendered compliance, while crispness can be regarded as a subsidiary perceptual dimension. Then, the relations between simulation parameters and perceptual feelings were analyzed by the regression analysis. This paper may provide a better understanding of the compliance perception mechanism and useful guidance for the improvement of rendering algorithms and devices for haptic human–computer interaction.