Cargando…
Harnessing the Plasma Proteome to Mirror Current and Predict Future Cardiac Remodeling After Myocardial Infarction
To identify plasma proteins that mirror current and predict future remodeling after myocardial infarction (MI), we retrospectively interrogated plasma proteomes of day (D)0 control (n = 16) and D3 MI (n = 15) from C57BL/6 J mice (20 ± 1 months). A total of 165 unique proteins were correlated with ca...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9944212/ https://www.ncbi.nlm.nih.gov/pubmed/36197585 http://dx.doi.org/10.1007/s12265-022-10326-w |
Sumario: | To identify plasma proteins that mirror current and predict future remodeling after myocardial infarction (MI), we retrospectively interrogated plasma proteomes of day (D)0 control (n = 16) and D3 MI (n = 15) from C57BL/6 J mice (20 ± 1 months). A total of 165 unique proteins were correlated with cardiac physiology variables. We prospectively tested the hypothesis that candidates identified retrospectively would predict cardiac physiology at an extended timepoint (D7 MI) in a second cohort of mice (n = 4 ± 1 months). We also examined human plasma from healthy controls (n = 18) and patients 48 h after presentation for MI (n = 41). Retrospectively, we identified 5 strong reflectors of remodeling (all r ≥ 0.60 and p < 0.05). Prospectively, ApoA1, IgA, IL-17E, and TIMP-1 mirrored current and predicted future remodeling. In humans, cytokine-cytokine receptor signaling was the top enriched KEGG pathway for all candidates. In summary, we identified plasma proteins that serve as useful prognostic indicators of adverse remodeling and progression to heart failure. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12265-022-10326-w. |
---|