Cargando…

Curcumin-encapsulated hydrophilic gelatin nanoparticle to stabilize fish oil-loaded Pickering emulsion

Herein, pH-cycle method was explored to prepare curcumin-encapsulated hydrophilic bovine bone gelatin (BBG/Cur) nanoparticle and then the obtained nanoparticle was applied to stabilize fish oil-loaded Pickering emulsion. The nanoparticle had a high encapsulation efficiency (93.9 ± 0.5 %) and loading...

Descripción completa

Detalles Bibliográficos
Autores principales: Kan, Guangyi, Zi, Ye, Li, Li, Gong, Huan, Peng, Jiawei, Wang, Xichang, Zhong, Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9944614/
https://www.ncbi.nlm.nih.gov/pubmed/36845465
http://dx.doi.org/10.1016/j.fochx.2023.100590
Descripción
Sumario:Herein, pH-cycle method was explored to prepare curcumin-encapsulated hydrophilic bovine bone gelatin (BBG/Cur) nanoparticle and then the obtained nanoparticle was applied to stabilize fish oil-loaded Pickering emulsion. The nanoparticle had a high encapsulation efficiency (93.9 ± 0.5 %) and loading capacity (9.4 ± 0.1 %) for curcumin. The nanoparticle-stabilized emulsion had higher emulsifying activity index (25.1 ± 0.9 m(2)/g) and lower emulsifying stability index (161.5 ± 18.8 min) than BBG-stabilized emulsion. The pH affected the initial droplet sizes and creaming index values of the Pickering emulsions: pH 11.0 < pH 5.0 ≈ pH 7.0 ≈ pH 9.0 < pH 3.0. Curcumin provided obvious antioxidant effect for the emulsions, which was also dependent on pH. The work suggested pH-cycle method could be used to prepare hydrophobic antioxidant-encapsulated hydrophilic protein nanoparticle. It also provided basic information on the development of protein nanoparticles for Pickering emulsion stabilization.