Cargando…
Systemic cascades on inhomogeneous random financial networks
This article presents a model of the financial system as an inhomogeneous random financial network (IRFN) with N nodes that represent different types of institutions such as banks or funds and directed weighted edges that signify counterparty relationships between nodes. The onset of a systemic cris...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9944675/ https://www.ncbi.nlm.nih.gov/pubmed/36846194 http://dx.doi.org/10.1007/s11579-022-00315-7 |
Sumario: | This article presents a model of the financial system as an inhomogeneous random financial network (IRFN) with N nodes that represent different types of institutions such as banks or funds and directed weighted edges that signify counterparty relationships between nodes. The onset of a systemic crisis is triggered by a large exogenous shock to banks’ balance sheets. Their behavioural response is modelled by a cascade mechanism that tracks the propagation of damaging shocks and possible amplification of the crisis, and leads the system to a cascade equilibrium. The mathematical properties of the stochastic framework are investigated for the first time in a generalization of the Eisenberg–Noe solvency cascade mechanism that accounts for fractional bankruptcy charges. New results include verification of a “tree independent cascade property” of the solvency cascade mechanism, and culminate in an explicit recursive stochastic solvency cascade mapping conjectured to hold in the limit as the number of banks N goes to infinity. It is shown how this cascade mapping can be computed numerically, leading to a rich picture of the systemic crisis as it evolves toward the cascade equilibrium. |
---|