Cargando…

No semantic information is necessary to evoke general neural signatures of face familiarity: evidence from cross-experiment classification

Recent theories on the neural correlates of face identification stressed the importance of the available identity-specific semantic and affective information. However, whether such information is essential for the emergence of neural signal of familiarity has not yet been studied in detail. Here, we...

Descripción completa

Detalles Bibliográficos
Autores principales: Dalski, Alexia, Kovács, Gyula, Ambrus, Géza Gergely
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9944719/
https://www.ncbi.nlm.nih.gov/pubmed/36244002
http://dx.doi.org/10.1007/s00429-022-02583-x
Descripción
Sumario:Recent theories on the neural correlates of face identification stressed the importance of the available identity-specific semantic and affective information. However, whether such information is essential for the emergence of neural signal of familiarity has not yet been studied in detail. Here, we explored the shared representation of face familiarity between perceptually and personally familiarized identities. We applied a cross-experiment multivariate pattern classification analysis (MVPA), to test if EEG patterns for passive viewing of personally familiar and unfamiliar faces are useful in decoding familiarity in a matching task where familiarity was attained thorough a short perceptual task. Importantly, no additional semantic, contextual, or affective information was provided for the familiarized identities during perceptual familiarization. Although the two datasets originate from different sets of participants who were engaged in two different tasks, familiarity was still decodable in the sorted, same-identity matching trials. This finding indicates that the visual processing of the faces of personally familiar and purely perceptually familiarized identities involve similar mechanisms, leading to cross-classifiable neural patterns.