Cargando…

A new sentiment analysis method to detect and Analyse sentiments of Covid-19 moroccan tweets using a recommender approach

Since the beginning of the covid-19 crisis, people from all over the world have used social media platforms to publish their opinions, sentiments, and ideas about the coronavirus epidemic and their news. Due to the nature of social networks, users share an immense amount of data every day in a freew...

Descripción completa

Detalles Bibliográficos
Autores principales: Madani, Youness, Erritali, Mohammed, Bouikhalene, Belaid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9944766/
https://www.ncbi.nlm.nih.gov/pubmed/36846530
http://dx.doi.org/10.1007/s11042-023-14514-x
Descripción
Sumario:Since the beginning of the covid-19 crisis, people from all over the world have used social media platforms to publish their opinions, sentiments, and ideas about the coronavirus epidemic and their news. Due to the nature of social networks, users share an immense amount of data every day in a freeway, which gives them the possibility to express opinions and sentiments about the coronavirus pandemic regardless of the time and the place. Moreover, The rapid number of exponential cases globally has become the apprehension of panic, fear, and anxiety among people. In this paper, we propose a new sentiment analysis approach to detect sentiments in Moroccan tweets related to covid-19 from March to October 2020. The proposed model is a recommender approach using the advantages of recommendation systems for classifying each tweet into three classes: positive, negative, or neutral. Experimental results show that our method gives good accuracy(86%) and outperforms the well-known machine learning algorithms. We find also that the sentiments of users changed from period to period, and that the evolution of the epidemiological situation in morocco affects the sentiments of users.