Cargando…

HECT domain interaction with ubiquitin binding sites on Tsg101-UEV controls HIV-1 egress, maturation, and infectivity

The HECT domain of HECT E3 ligases consists of flexibly linked N- and C-terminal lobes, with a ubiquitin (Ub) donor site on the C-lobe that is directly involved in substrate modification. HECT ligases also possess a secondary Ub binding site in the N-lobe, which is thought to play a role in processi...

Descripción completa

Detalles Bibliográficos
Autores principales: Nyenhuis, David A., Rajasekaran, Rohith, Watanabe, Susan, Strub, Marie-Paule, Khan, Mahfuz, Powell, Michael, Carter, Carol A., Tjandra, Nico
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9944984/
https://www.ncbi.nlm.nih.gov/pubmed/36642186
http://dx.doi.org/10.1016/j.jbc.2023.102901
Descripción
Sumario:The HECT domain of HECT E3 ligases consists of flexibly linked N- and C-terminal lobes, with a ubiquitin (Ub) donor site on the C-lobe that is directly involved in substrate modification. HECT ligases also possess a secondary Ub binding site in the N-lobe, which is thought to play a role in processivity, specificity, or regulation. Here, we report the use of paramagnetic solution NMR to characterize a complex formed between the isolated HECT domain of neural precursor cell-expressed developmentally downregulated 4-1 and the ubiquitin E2 variant (UEV) domain of tumor susceptibility gene 101 (Tsg101). Both proteins are involved in endosomal trafficking, a process driven by Ub signaling, and are hijacked by viral pathogens for particle assembly; however, a direct interaction between them has not been described, and the mechanism by which the HECT E3 ligase contributes to pathogen formation has not been elucidated. We provide evidence for their association, consisting of multiple sites on the neural precursor cell-expressed developmentally downregulated 4-1 HECT domain and elements of the Tsg101 UEV domain involved in noncovalent ubiquitin binding. Furthermore, we show using an established reporter assay that HECT residues perturbed by UEV proximity define determinants of viral maturation and infectivity. These results suggest the UEV interaction is a determinant of HECT activity in Ub signaling. As the endosomal trafficking pathway is hijacked by several human pathogens for egress, the HECT-UEV interaction could represent a potential novel target for therapeutic intervention.