Cargando…

iSC.MEB: an R package for multi-sample spatial clustering analysis of spatial transcriptomics data

SUMMARY: Emerging spatially resolved transcriptomics (SRT) technologies are powerful in measuring gene expression profiles while retaining tissue spatial localization information and typically provide data from multiple tissue sections. We have previously developed the tool SC.MEB—an empirical Bayes...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xiao, Liu, Wei, Song, Fangda, Liu, Jin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9945056/
https://www.ncbi.nlm.nih.gov/pubmed/36845201
http://dx.doi.org/10.1093/bioadv/vbad019
_version_ 1784892056157552640
author Zhang, Xiao
Liu, Wei
Song, Fangda
Liu, Jin
author_facet Zhang, Xiao
Liu, Wei
Song, Fangda
Liu, Jin
author_sort Zhang, Xiao
collection PubMed
description SUMMARY: Emerging spatially resolved transcriptomics (SRT) technologies are powerful in measuring gene expression profiles while retaining tissue spatial localization information and typically provide data from multiple tissue sections. We have previously developed the tool SC.MEB—an empirical Bayes approach for SRT data analysis using a hidden Markov random field. Here, we introduce an extension to SC.MEB, denoted as integrated spatial clustering with hidden Markov random field using empirical Bayes (iSC.MEB) that permits the users to simultaneously estimate the batch effect and perform spatial clustering for low-dimensional representations of multiple SRT datasets. We demonstrate that iSC.MEB can provide accurate cell/domain detection results using two SRT datasets. AVAILABILITY AND IMPLEMENTATION: iSC.MEB is implemented in an open-source R package, and source code is freely available at https://github.com/XiaoZhangryy/iSC.MEB. Documentation and vignettes are provided on our package website (https://xiaozhangryy.github.io/iSC.MEB/index.html). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Advances online.
format Online
Article
Text
id pubmed-9945056
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-99450562023-02-23 iSC.MEB: an R package for multi-sample spatial clustering analysis of spatial transcriptomics data Zhang, Xiao Liu, Wei Song, Fangda Liu, Jin Bioinform Adv Application Note SUMMARY: Emerging spatially resolved transcriptomics (SRT) technologies are powerful in measuring gene expression profiles while retaining tissue spatial localization information and typically provide data from multiple tissue sections. We have previously developed the tool SC.MEB—an empirical Bayes approach for SRT data analysis using a hidden Markov random field. Here, we introduce an extension to SC.MEB, denoted as integrated spatial clustering with hidden Markov random field using empirical Bayes (iSC.MEB) that permits the users to simultaneously estimate the batch effect and perform spatial clustering for low-dimensional representations of multiple SRT datasets. We demonstrate that iSC.MEB can provide accurate cell/domain detection results using two SRT datasets. AVAILABILITY AND IMPLEMENTATION: iSC.MEB is implemented in an open-source R package, and source code is freely available at https://github.com/XiaoZhangryy/iSC.MEB. Documentation and vignettes are provided on our package website (https://xiaozhangryy.github.io/iSC.MEB/index.html). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Advances online. Oxford University Press 2023-02-17 /pmc/articles/PMC9945056/ /pubmed/36845201 http://dx.doi.org/10.1093/bioadv/vbad019 Text en © The Author(s) 2023. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Application Note
Zhang, Xiao
Liu, Wei
Song, Fangda
Liu, Jin
iSC.MEB: an R package for multi-sample spatial clustering analysis of spatial transcriptomics data
title iSC.MEB: an R package for multi-sample spatial clustering analysis of spatial transcriptomics data
title_full iSC.MEB: an R package for multi-sample spatial clustering analysis of spatial transcriptomics data
title_fullStr iSC.MEB: an R package for multi-sample spatial clustering analysis of spatial transcriptomics data
title_full_unstemmed iSC.MEB: an R package for multi-sample spatial clustering analysis of spatial transcriptomics data
title_short iSC.MEB: an R package for multi-sample spatial clustering analysis of spatial transcriptomics data
title_sort isc.meb: an r package for multi-sample spatial clustering analysis of spatial transcriptomics data
topic Application Note
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9945056/
https://www.ncbi.nlm.nih.gov/pubmed/36845201
http://dx.doi.org/10.1093/bioadv/vbad019
work_keys_str_mv AT zhangxiao iscmebanrpackageformultisamplespatialclusteringanalysisofspatialtranscriptomicsdata
AT liuwei iscmebanrpackageformultisamplespatialclusteringanalysisofspatialtranscriptomicsdata
AT songfangda iscmebanrpackageformultisamplespatialclusteringanalysisofspatialtranscriptomicsdata
AT liujin iscmebanrpackageformultisamplespatialclusteringanalysisofspatialtranscriptomicsdata