Cargando…
Using Haplotype-Based Artificial Intelligence to Evaluate SARS-CoV-2 Novel Variants and Mutations
IMPORTANCE: Earlier detection of emerging novel SARS-COV-2 variants is important for public health surveillance of potential viral threats and for earlier prevention research. Artificial intelligence may facilitate early detection of SARS-CoV2 emerging novel variants based on variant-specific mutati...
Autores principales: | Zhao, Lue Ping, Cohen, Seth, Zhao, Michael, Madeleine, Margaret, Payne, Thomas H., Lybrand, Terry P., Geraghty, Daniel E., Jerome, Keith R., Corey, Lawrence |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9945077/ https://www.ncbi.nlm.nih.gov/pubmed/36809468 http://dx.doi.org/10.1001/jamanetworkopen.2023.0191 |
Ejemplares similares
-
Application of Statistical Learning to Identify Omicron Mutations in SARS-CoV-2 Viral Genome Sequence Data From Populations in Africa and the United States
por: Zhao, Lue Ping, et al.
Publicado: (2022) -
Rapidly Identifying New Coronavirus Mutations of Potential Concern in the Omicron Variant Using an Unsupervised Learning Strategy
por: Zhao, Lue Ping, et al.
Publicado: (2022) -
Rapidly identifying new coronavirus mutations of potential concern in the Omicron variant using an unsupervised learning strategy
por: Zhao, Lue Ping, et al.
Publicado: (2022) -
Tracking SARS-CoV-2 Spike Protein Mutations in the United States (January 2020—March 2021) Using a Statistical Learning Strategy
por: Zhao, Lue Ping, et al.
Publicado: (2021) -
Tracking SARS-CoV-2 Spike Protein Mutations in the United States (2020/01 – 2021/03) Using a Statistical Learning Strategy
por: Zhao, Lue Ping, et al.
Publicado: (2021)