Cargando…
A duality based 2-approximation algorithm for maximum agreement forest
We give a 2-approximation algorithm for the Maximum Agreement Forest problem on two rooted binary trees. This NP-hard problem has been studied extensively in the past two decades, since it can be used to compute the rooted Subtree Prune-and-Regraft (rSPR) distance between two phylogenetic trees. Our...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9945189/ https://www.ncbi.nlm.nih.gov/pubmed/36845754 http://dx.doi.org/10.1007/s10107-022-01790-y |
Sumario: | We give a 2-approximation algorithm for the Maximum Agreement Forest problem on two rooted binary trees. This NP-hard problem has been studied extensively in the past two decades, since it can be used to compute the rooted Subtree Prune-and-Regraft (rSPR) distance between two phylogenetic trees. Our algorithm is combinatorial and its running time is quadratic in the input size. To prove the approximation guarantee, we construct a feasible dual solution for a novel exponential-size linear programming formulation. In addition, we show this linear program has a smaller integrality gap than previously known formulations, and we give an equivalent compact formulation, showing that it can be solved in polynomial time. |
---|