Cargando…
Deep learning-based morphological feature analysis and the prognostic association study in colon adenocarcinoma histopathological images
Colorectal cancer (CRC) is now the third most common malignancy to cause mortality worldwide, and its prognosis is of great importance. Recent CRC prognostic prediction studies mainly focused on biomarkers, radiometric images, and end-to-end deep learning methods, while only a few works paid attenti...
Autores principales: | Xiao, Xiao, Wang, Zuoheng, Kong, Yan, Lu, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9945212/ https://www.ncbi.nlm.nih.gov/pubmed/36845699 http://dx.doi.org/10.3389/fonc.2023.1081529 |
Ejemplares similares
-
Integrative Analysis of Histopathological Images and Genomic Data in Colon Adenocarcinoma
por: Li, Hui, et al.
Publicado: (2021) -
Predicting Tumor Mutational Burden From Lung Adenocarcinoma Histopathological Images Using Deep Learning
por: Niu, Yi, et al.
Publicado: (2022) -
Prediction of Tumor Mutation Load in Colorectal Cancer Histopathological Images Based on Deep Learning
por: Liu, Yongguang, et al.
Publicado: (2022) -
Computational Image Analysis Identifies Histopathological Image Features Associated With Somatic Mutations and Patient Survival in Gastric Adenocarcinoma
por: Cheng, Jun, et al.
Publicado: (2021) -
A Deep Learning System to Predict the Histopathological Results From Urine Cytopathological Images
por: Liu, Yixiao, et al.
Publicado: (2022)