Cargando…
Applications of radiomics-based analysis pipeline for predicting epidermal growth factor receptor mutation status
BACKGROUND: This study aimed to develop a pipeline for selecting the best feature engineering-based radiomic path to predict epidermal growth factor receptor (EGFR) mutant lung adenocarcinoma in (18)F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT). METHODS: The st...
Autores principales: | Liu, Zefeng, Zhang, Tianyou, Lin, Liying, Long, Fenghua, Guo, Hongyu, Han, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9945395/ https://www.ncbi.nlm.nih.gov/pubmed/36810090 http://dx.doi.org/10.1186/s12938-022-01049-9 |
Ejemplares similares
-
Correction: Applications of radiomics‑based analysis pipeline for predicting epidermal growth factor receptor mutation status
por: Liu, Zefeng, et al.
Publicado: (2023) -
The Potential of Radiomics Nomogram in Non-invasively Prediction of Epidermal Growth Factor Receptor Mutation Status and Subtypes in Lung Adenocarcinoma
por: Zhao, Wei, et al.
Publicado: (2020) -
Machine Learning-Based Radiomics for Prediction of Epidermal Growth Factor Receptor Mutations in Lung Adenocarcinoma
por: Lu, Jiameng, et al.
Publicado: (2022) -
Investigation of the combination of intratumoral and peritumoral radiomic signatures for predicting epidermal growth factor receptor mutation in lung adenocarcinoma
por: Kawazoe, Yusuke, et al.
Publicado: (2023) -
The Value of Predicting Human Epidermal Growth Factor Receptor 2 Status in Adenocarcinoma of the Esophagogastric Junction on CT-Based Radiomics Nomogram
por: Wang, Shuxing, et al.
Publicado: (2021)