Cargando…
MetalProGNet: a structure-based deep graph model for metalloprotein–ligand interaction predictions
Metalloproteins play indispensable roles in various biological processes ranging from reaction catalysis to free radical scavenging, and they are also pertinent to numerous pathologies including cancer, HIV infection, neurodegeneration, and inflammation. Discovery of high-affinity ligands for metall...
Autores principales: | Jiang, Dejun, Ye, Zhaofeng, Hsieh, Chang-Yu, Yang, Ziyi, Zhang, Xujun, Kang, Yu, Du, Hongyan, Wu, Zhenxing, Wang, Jike, Zeng, Yundian, Zhang, Haotian, Wang, Xiaorui, Wang, Mingyang, Yao, Xiaojun, Zhang, Shengyu, Wu, Jian, Hou, Tingjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9945430/ https://www.ncbi.nlm.nih.gov/pubmed/36845922 http://dx.doi.org/10.1039/d2sc06576b |
Ejemplares similares
-
Proteome-Wide Profiling of the Covalent-Druggable Cysteines with a Structure-Based Deep Graph Learning Network
por: Du, Hongyan, et al.
Publicado: (2022) -
ResGNet-C: A graph convolutional neural network for detection of COVID-19
por: Yu, Xiang, et al.
Publicado: (2021) -
Chemistry-intuitive explanation of graph neural networks for molecular property prediction with substructure masking
por: Wu, Zhenxing, et al.
Publicado: (2023) -
A flexible data-free framework for structure-based de novo drug design with reinforcement learning
por: Du, Hongyan, et al.
Publicado: (2023) -
Could graph neural networks learn better molecular representation for drug discovery? A comparison study of descriptor-based and graph-based models
por: Jiang, Dejun, et al.
Publicado: (2021)