Cargando…
Exploring a global interpretation mechanism for deep learning networks when predicting sepsis
The purpose of this study is to identify additional clinical features for sepsis detection through the use of a novel mechanism for interpreting black-box machine learning models trained and to provide a suitable evaluation for the mechanism. We use the publicly available dataset from the 2019 Physi...
Autores principales: | Strickler, Ethan A. T., Thomas, Joshua, Thomas, Johnson P., Benjamin, Bruce, Shamsuddin, Rittika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9945464/ https://www.ncbi.nlm.nih.gov/pubmed/36810645 http://dx.doi.org/10.1038/s41598-023-30091-3 |
Ejemplares similares
-
An interpretable deep-learning model for early prediction of sepsis in the emergency department
por: Zhang, Dongdong, et al.
Publicado: (2021) -
Towards the Development of a Substance Abuse Index (SEI) through Informatics
por: Guttha, Nikhila, et al.
Publicado: (2021) -
Automatic interpretation of otoliths using deep learning
por: Moen, Endre, et al.
Publicado: (2018) -
Exploring interpretability in deep learning prediction of successful ablation therapy for atrial fibrillation
por: Ogbomo-Harmitt, Shaheim, et al.
Publicado: (2023) -
Deep learning interpretation of echocardiograms
por: Ghorbani, Amirata, et al.
Publicado: (2020)