Cargando…
Heat treatment in the presence of arginine increases the emulsifying properties of soy proteins
This study aimed to improve the emulsifying properties of commercial soy protein isolates (CSPIs). CSPIs were thermally denatured without additives (CSPI_H) and with arginine (CSPI_A), urea (CSPI_U), and guanidine hydrochloride (CSPI_G), which improve protein solubility to prevent aggregation. These...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9945471/ https://www.ncbi.nlm.nih.gov/pubmed/36845474 http://dx.doi.org/10.1016/j.fochx.2023.100567 |
Sumario: | This study aimed to improve the emulsifying properties of commercial soy protein isolates (CSPIs). CSPIs were thermally denatured without additives (CSPI_H) and with arginine (CSPI_A), urea (CSPI_U), and guanidine hydrochloride (CSPI_G), which improve protein solubility to prevent aggregation. These additives were removed by dialysis, and the samples were lyophilized. CSPI_A resulted in high emulsifying properties. FT-IR analysis showed that the β-sheet content in CSPI_A was reduced compared to that of untreated CSPI (CSPI_F). Fluorescence analysis showed that the tryptophan-derived emission peak of CSPI_A shifted between CSPI_F and CSPI_H which was exposed to hydrophobic amino acid chains with aggregation. As a result, the structure of CSPI_A became moderately unfolded and exposed the hydrophobic amino acid chains without aggregation. The CSPI_A solution had a more reduced oil–water interface tension than other CSPIs. These results support that CSPI_A attaches efficiently to the oil–water interface and produces small, less flocculated emulsions. |
---|